

NV defects in diamond Physics and applications

Vincent JACQUES

Laboratoire Charles Coulomb UMR5221, Université Montpellier, and CNRS

From Paris to Montpellier...

An appealing material : **Diamond**

A perfect diamond would not absorb visible light...

...but many defects are optically active

Color centers

The « Hope » diamond (diamant bleu de la couronne, Louis XIV)

The « Hortensia » diamond (diamant rose de la couronne, Louis XIV)

Defects in diamond, a real zoology...

more than 500 optically-active defects are known in diamond

Outline

1. The NV defect in diamond

Main properties

2. Applications in 'quantum information science'

3. Magnetic sensing with a single NV defect

Outline

1. The NV defect in diamond

Main properties

2. Applications in 'quantum information science'

3. Magnetic sensing with a single NV defect

Nitrogen-Vacancy (NV) defect in diamond

> An artificial atom « trapped » in the diamond lattice

Nitrogen-Vacancy (NV) defect in diamond

> An artificial atom « trapped » in the diamond lattice

Detection at the single emitter level at room T – perfect photostability

Gruber et al., Science 276, 2012 (1997)

A robust single photon source

A robust single photon source

Engineering NV defect in diamond

2012

Spinicelli et al., NJP 13, 025014

μm

High purity diamond using CVD growth

Gicquel and Achard group(Villetaneuse)

Meijer group (Leipzig)

(z) : quantization axis of the defect

Important properties

- Spin-conserving optical transition $\Delta m_s = 0$.
- Spin-dependent ISC to singlet states.

Important properties

- Spin-conserving optical transition $\Delta m_s = 0$.
- Spin-dependent ISC to singlet states.

Consequences

 Polarization in m_s=0 by optical pumping.

Important properties

- Spin-conserving optical transition $\Delta m_s = 0$.
- Spin-dependent ISC to singlet states.

Consequences

Polarization in m_s=0
by optical pumping.

axis of the defect

Important properties

- Spin-conserving optical \geq transition $\Delta m_s = 0$.
- Spin-dependent ISC to \geq singlet states.

Consequences

Polarization in m_s=0 \geq by optical pumping.

(z) : quantization axis of the defect

Important properties

- Spin-conserving optical transition $\Delta m_s = 0$.
- Spin-dependent ISC to singlet states.

Consequences

- Polarization in m_s=0 by optical pumping.
- Spin-dependent fluorescence.

Coherent spin manipulation

Coherent spin manipulation

Coherence time – Ramsey fringes

Coherent spin manipulation

Coherence time – Ramsey fringes

High Pressure High Temperature (HPHT diamond)

 $[N] \simeq 100 \, \text{ppm}$ $[^{13}\text{C}] \simeq 1,1\%$

T₂*~ 100 ns

High Pressure High Temperature (HPHT diamond)

 $[N] \simeq 100 \, \text{ppm}$ $[^{13}\text{C}] \simeq 1,1\%$

T₂*~ 100 ns

CVD diamond

High Pressure High Temperature (HPHT diamond)

 $[N] \simeq 100 \, \text{ppm}$ $[^{13}\text{C}] \simeq 1,1\%$

T₂*~ 100 ns

CVD diamond

 $\frac{[N] \simeq 1 \text{ ppb}}{[^{13}C] \simeq 1,1\%}$

T₂*~5 μs

High Pressure High Temperature (HPHT diamond)

 $[\mathrm{N}] \simeq 100 \,\mathrm{ppm}$ $[^{13}\mathrm{C}] \simeq 1,1\%$

T₂*~ 100 ns

CVD diamond

 $\frac{[N] \simeq 1 \text{ ppb}}{[^{13}C] \simeq 1, 1\%}$

T₂*~5 μs

Isotopically modified CVD-diamond

$$\begin{split} [\mathrm{N}] &\simeq 1\,\mathrm{ppb} \\ [^{13}\mathrm{C}] &\simeq 0,01\% \end{split}$$

Spin-free lattice

Isotopically modified CVD-diamond

D. Twitchen, Element 6

Engineering the spin Hamiltonian

 $\mathcal{H} = DS_z^2 + \gamma_e BS_z + E(S_x^2 - S_y^2)$

zero-field splitting ~ 3 GHz

e-spin Zeeman ∼ 3 MHz/G

Strain/electric field *E*~100 kHz

$$[^{13}C] = 1.1\%$$

Outline

1. The NV defect in diamond

Main properties

2. Applications in 'quantum information science'

3. Magnetic sensing with a single NV defect

Nuclear spins as qubits

Coupling with nearby nuclear spins

Discrete values of ¹³C hyperfine splittings

Real-time evolution of a single ¹³C nuclear spin @ room T

Real-time evolution of a single ¹³C nuclear spin @ room T

Real-time evolution of a single ¹³C nuclear spin @ room T

Nuclear-spin dependent photon counting distributions

Real-time evolution of a single ¹³C nuclear spin @ room T

Nuclear-spin dependent photon counting distributions

Real-time evolution of a single ¹³C nuclear spin @ room T

Nuclear-spin dependent photon counting distributions

Initialization Fidelity
$$\mathcal{F}_i > 99\%$$

Readout fidelity $\mathcal{F}_r = 96 \pm 1\%$

Real-time evolution of a single ¹³C nuclear spin @ room T

Probability for « no spin-flip » over a time $\,\delta t$:

 $\implies e^{-\delta t/T_1}$

*T*₁ : nuclear spin lifetime

- Increasing the collection efficiency
 e.g. with SIL or nanopillars
- \succ Increasing the T₁

Hadden *et al., APL* (2010) Babinec *et al., Nat. Nano* (2010)

Nuclear spin relaxation time

Real-time observation of the Overhauser field produced by a diluted nuclear spin bath [N nuclear spins] @ room T

Dréau et al. PRL 113, 137601 (2014)

Scaling-up...

10⁴

10³

0

10

20

Distance r (nm)

P. Neumann, Nat. Phys. 6, 249 (2010)

30

40

 $T_2 \sim 1 \text{ ms} \rightarrow r < 40 \text{ nm}$

Engineering NV defects by ion implantation

Improving the spatial resolution

Improving the spatial resolution

Ion beam focused into an AFM tip Hole made by Focused Ion Beam 1µm

Cortesy of S. Pezzagna and J. Meijer (Leipzig)

Improving the spatial resolution

Ion beam focused into an AFM tip

Spatial resolution limited by diffraction $\sim \lambda/2$ Sub-diffraction optical imaging is required STED

Hell, Opt. Lett. 19, 780-782 (1994)

Cortesy of S. Pezzagna and J. Meijer (Leipzig)

Nanoscale optical resolution

Rittweger, Nat. Phot. (2009)

Main advantage of NV defects ... its perfect photostability

Rittweger, Nat. Phot. (2009)

f

Back to the implantation through the AFM tip

Array of NV defects coupled by dipolar coupling (remains highly challenging...)

□ Long distance entanglement with a spin/photon interface

(with trapped ions)

Moehring, *Nature* 449, 68 (2007) Olmshenk, *Science* 323, 486 (2009)

challenging as well...

Long-distance entanglement with a spin/photon interface

Long-distance entanglement with a spin/photon interface

Loophole-free violation of a Bell inequality using entangled electronspins separated by 1.3 km

Hansen, Nature 526, 682 (2015) - R. Hanson group (Delft)

Hybrid quantum systems

Kubo et al., Phys. Rev. Lett. 107, 220501 (2011) - P. Bertet (CEA)

Outline

1. The NV defect in diamond

Main properties

2. Applications in 'quantum information science'

The seminal proposal

Chernobrod and Berman "Spin microscope based on optically detected magnetic resonance" J. Appl. Phys. **97** 014903 (2005).

Proposal for NV defects : Taylor, Nat. Phys. (2008), Degen, APL (2008) First proof of principle : Maze, Nature (2008), Balasubramanian, Nature (2008)

Scanning-NV magnetometry

- ★ Atomic-sized detection volume
- ★ Quantitative and vectorial
- ★ No magnetic back-action

Scanning-NV magnetometry

Imaging the core of a magnetic vortex

AFM image

Rondin, Nat. Com. 4, 2279 (2013)

Maletinsky group (Basel)

Information storage and processing

Information storage and processing

HDD : mechanical motion

large energy consumption

> use current-induced motion (spin torque)

Information storage and processing

HDD : mechanical motion

large energy consumption

> use current-induced motion (spin torque)

e.g.: the domain wall (DW) "racetrack memory"

Ferromagnets "shrink" to few atomic layers...

e.g.: the domain wall (DW) "racetrack memory"

Domain walls in ultrathin ferromagnets

Inner structure of a domain wall

Bloch wall

Néel wall (right)

<u>++++</u>×++++++

Bloch walls are predicted by elementary magnetostatic theory

Néel wall (left)

<u>++++</u>×++++++

Inner structure of a domain wall

Inner structure of a domain wall

Bloch wall

Néel wall (right)

<u>+++++</u>

Bloch walls are predicted by elementary magnetostatic theory

But inconsistencies in recent current-induced domain wall motion experiments *Miron et al., Nat. Mater. 10, 419 (2011)*

Ryu et al., Nat. Nano. 8, 527 (2013)
Interfacial Dzyaloshinskii-Moriya interaction proposed as a way to stabilize Néel walls

Thiaville et al., EJP 100, 57002 (2012)

Néel wall (left)

<u>++++</u>

Fert et al. Nat. Nano. 8, 152 (2013)

Determining the structure of the DW

Determining the structure of the DW

DW imaging with a scanning NV magnetometer

DW imaging with a scanning NV magnetometer

AFM

AFM

 \otimes

40

20

0

Height (nm)

200 nm

 \odot

Zeeman shift (MHz)

Quantum sensing with NV defects

Quantum sensing with NV defects

Quantum sensing with NV defects

Quantum information, Spin physics

