
Weak and strong localization - Cargèse - November 2016

Anderson localization of cold atoms

in a disordered speckle potential

Introduction : Atomic ultra-cold matter waves may interfere, as exemplified by the
development of atomic interferometry during the last 20 years. This problem studies how
to create a specifically tailored disorder acting on the external motion of cold atoms and
how such a disorder may influence this motion, with emphasis on Anderson localization.

In the first part, you have to calculate the statistical properties of a ”speckle” pattern
created by a coherent laser beam transmitted through a diffusive glass plate. In the second
part, you have to use these statistical properties to study the dynamics of a cold atomic
gas placed in such a speckle pattern. The two parts are essentially independent.

Part 1: Statistical properties of a speckle pattern

We consider the situation depicted in figure 1, where a monochromatic laser beam (ap-
proximated by a plane wave with wave-vector k0 along the z-axis) is diffracted by a
square aperture (side L) in the plane z = 0. We will assume that all light sources have
the same polarization, so that we can forget about light polarization and describe the
electromagnetic field by a single complex variable E .

Figure 1: A monochromatic laser beam along the z-axis is sent on a square aperture
of size L in the z = 0 plane. We consider the diffracted field at large distance in the ~k
direction, close to the initial direction (paraxial approximation).

Fraunhofer regime.– In a direction close to the z−axis (in the paraxial approximation)
one can use the Fraunhofer formula, relating the amplitude of the field at the level of
the aperture (z = 0), denoted A(x, y), to the amplitude of the field diffracted in the ~k
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direction (with kx, ky � k0 and kz ≈ k0) :

E(~k) =

∫ L/2

−L/2
dx

∫ L/2

−L/2
dy A(x, y) exp [i(kxx+ kyy)] . (1)

A. Warm up : diffraction by a square aperture.– We want to study the amplitude
of the wave diffracted by a square aperture, in the absence of any diffusive plate, i.e.
A(x, y) = A is constant. Compute E(~k) and the corresponding intensity I(~k) = |E(~k)|2.

It may be useful to introduce the so-called sinc function : sinc(x)
def
= sinx/x.

B. Diffraction by a diffusive plate.– We now add on the square aperture a diffusive
glass plate whose effect is to modify the phase of A(x, y) differently at each position (x, y).
We assume that the phase (mod. 2π) is a random variable, homogenously distributed in
[0, 2π[, and which is moreover uncorrelated between different positions.

1/ Distribution of the electric field.– Justify, with these hypotheses, the following
average values:

〈A(~r)〉 = 0

〈A(~r)A(~r ′)〉 = 0

〈A(~r)A∗(~r ′)〉 = A2 η2 δη(~r − ~r ′)

where δη is a (normalized, i.e. integral=1) 2D Dirac “distribution” of width η in each
direction (x and y).

Explain why the wave E(~k) diffracted in direction ~k is a complex random variable with

a Gaussian distribution with zero mean, 〈E(~k)〉 = 0.

Hint : you can discretize expression (1) as E(~k) = η2
∑N

n=1A(~rn) ei~k·~rn , where ~rn are N =
(L/η)2 discrete and regular positions on the square (hence 〈A(~rn)A∗(~rm)〉 = A2 δn,m), and
use a well-known theorem of probability theory.

Justify that X = Re(E) and Y = Im(E) have the same variance and are uncorrelated.

2/ Rayleigh law.– Deduce that the intensity I(~k) = |E(~k)|2 is distributed according to
an exponential law :

P (I) =
exp (−I/I0)

I0

for I > 0 (2)

where I0 is the average intensity. What is the most probable intensity? Compute the
variance of the intensity.

3/ Field correlations.– We are interested in the correlation function of the diffracted

amplitude and intensity in different directions ~k and ~k′.

a) Show that 〈E(~k)E(~k′)〉 = 0. Compute the correlation function 〈E(~k)E∗(~k′)〉 and express

it as a function of ∆~k = ~k − ~k′, L and I0.

Hint : use the hint of question 1/.

b) Using the Wick’s theorem, show that:

〈I(~k)I(~k′)〉 = I2
0 +

∣∣∣〈E(~k)E∗(~k′)〉
∣∣∣
2

(3)
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c) Show that one recovers the variance of the intensity previously computed. Extend the

argument for the higher moments 〈I(~k)n〉. Compare with the Rayleigh law found above.

4/ Spatial speckle pattern.– The setting under study can be used in order to create a
spatially (instead of angularly) correlated laser intensity.

a) Explain briefly how, using a lens of focal length f , it is possible to create such a
potential in a convenient plane. If we denote by ~r = (x, y) the coordinate in this plane,

how a variation of direction ∆~k is related to a variation in position ∆~r in this plane (we
recall that kx, ky � kz ≈ k0)?

b) Suppose that one puts a gas of non-interacting cold atoms in this plane, and that

the laser frequency ω = c||~k|| is quasi-resonant with an atomic resonance transition at
frequency ω0. Briefly explain the relevant mechanisms of the atom-light interaction and
why, if the detuning δ = ω−ω0 is large compared to the width Γ of the atomic resonance,
the speckle pattern acts as an effective “optical” potential V which depends on the position
~r of the center of mass of the atom. Show that the correlation function of the potential
is given by :

〈V (~r)V (~r + ∆~r)〉 = V 2
0

[
1 + sinc2

(
∆x

σ

)
sinc2

(
∆y

σ

)]
(4)

where σ is the correlation length of the speckle. Express σ as a function of the laser
wavelength λ = 2π/k0, L and f . Considering the approximations used in the calculation,
what is the order of magnitude of the shortest correlation length achievable?

C. Diffraction by a Gaussian aperture.– We now consider the case where there is no
aperture, but the incoming laser beam has a Gaussian distribution of amplitude in the

z = 0 plane : |A(x, y)| = A exp
(
−x2+y2

2r20

)
.

1/ By following the same lines as in question B.3/, deduce the field correlation 〈E(~k)E∗(~k′)〉
in this case.

2/ What would be the corresponding correlations replacing Eq. (4)?

Part 2: Cold atoms in a 1D speckle potential

We want to study the dynamics of one atom of mass m exposed to a spatially disordered
potential V (~r) whose correlation function is given by eq. (4). We assume that some
external constraint forces the atom to move only along the x-axis, so that the entire
dynamics is one-dimensional with Hamiltonian :

H = H0 + V (x) =
p2
x

2m
+ V (x) (5)

with 〈V (x)〉 = V0 and

〈V (x)V (x+ ∆x)〉 = V 2
0

[
1 + sinc2

(
∆x

σ

)]
(6)

A. Structure of the Green functions
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1/ a) We introduce the retarded Green function G0(E) = 1/(E−H0 + i0+) (we omit the

“R” index to lighten). Express the Green function in k-space, G̃0(k, k′;E)
def
= 〈φk |G0(E)|φk′ 〉,

Hint : φk(x) = 〈x |φk 〉 = (1/
√
L)eikx denotes a plane wave in finite volume L, with quan-

tized wave vectors k = 2nπ/L for n ∈ Z, and orthonormalisation 〈φk |φk′ 〉 = δk,k′ (thus∑
k ↔ L

2π

∫
dk).

b) Recover the corresponding expression in x-space,

G0(x, x′;E) =
m

i ~2kE
exp(ikE|x− x′|) where kE

def
=
√

2mE/~ . (7)

2/ Recall the relation between the Green function G(E) (for Hamiltonian H), G0(E)
and V . Briefly explain the notion of average Green function G(E). The self-energy Σ(E)
is the operator such that :

G(E) =
1

G−1
0 (E)− Σ(E)

(8)

Recall the Dyson equation satisfied by Σ(E). Give a physical argument to explain that the
self energy is diagonal in the momentum representation : 〈φk |Σ(E)|φk′ 〉 = Σ(k;E) δk,k′ .

3/ We consider the weak disorder regime |Σ(k;E)| � |E|. We assume that the self-energy
is a smooth function of k and E. What is the physical interpretation of Re

[
Σ(k;E)

]
and

Im
[
Σ(k;E)

]
? Show that the average Green function in x-space can be written as :

G(x, x′;E) ≈ G0(x, x′;E) exp

(
−|x− x

′|
2`(E)

)
, (9)

where `(E) can be expressed in terms of Σ(kE;E). What is the physical meaning of `(E)?

B. Born approximation.– It is possible to perform a diagrammatic expansion of Σ(k;E)
in powers of the disorder strength V0. Up to second order, it is :

with hV (x)i = V0 and

hV (x0)V (x0 + �x)i = V 2
0


1 + sinc2

✓
�x

�

◆�
(6)

A. Structure of the Green functions

1/ a) We introduce the retarded Green function G0(E) = 1/(E �H0 + i0+) (we omit the

“R” index to lighten). Express the Green function in k-space, eG0(k, k0; E)
def
= h�k |G0(E)|�k0 i,

Hint : �k(x) = hx |�k i = (1/
p

L)eikx denotes a plane wave in finite volume L, with quan-
tized wave vectors k = 2n⇡/L for n 2 Z, and orthonormalisation h�k |�k0 i = �k,k0 (thusP

k $ L
2⇡

R
dk).

b) Recover the corresponding expression in x-space,

G0(x, x0; E) =
m

i ~2kE

exp(ikE|x � x0|) where kE
def
=

p
2mE/~ . (7)

2/ Recall the relation between the Green function G(E) (for Hamiltonian H), G0(E)
and V . Briefly explain the notion of average Green function G(E). The self-energy ⌃(E)
is the operator such that:

G(E) =
1

G�1
0 (E) � ⌃(E)

(8)

Recall the Dyson equation satisfied by ⌃(E). Give a physical argument to explain that the
self energy is diagonal in the momentum representation : h�k |⌃(E)|�k0 i = ⌃(k; E) �k,k0 .

3/ We consider the weak disorder regime |⌃(k; E)| ⌧ |E|. We assume that the self-energy
is a smooth function of k and E. What is the physical interpretation of Re

⇥
⌃(k; E)

⇤
and

Im
⇥
⌃(k; E)

⇤
? Show that the average Green function in x-space can be written as:

G(x, x0; E) ⇡ G0(x, x0; E) exp

✓
�|x � x0|

2`(E)

◆
(9)

What the physical meaning of `(E) ? Express it as a function of ⌃(kE; E).

B. Born approximation.– It is possible to perform a diagrammatic expansion of ⌃(k; E)
in powers of the disorder strength V0. Up to second order, it is :

⌃(k; E) ' +
k k k

k0

k � k0

k

1/ Explain the meaning of the various parts of these diagrams.

2/ Compute ⌃(k; E) at first order in V0. Interpret the result.

3/ Write the integral expression for the second order term (the so-called “Born ap-
proximation”). Show that the imaginary part of the “on-shell” self-energy (that is for
kE =

p
2mE/~) is given by :

Im⌃(kE; E) ' � mV 2
0

2~2kE

[C(0) + C(2kE)] (10)

4

(10)

+kk
⌃(k; E) ' k k

k0

k � k0

Figure 2: Numerically computed inverse localization length for a 1D particle in a disor-
dered “speckle” potential, versus. the parameter k�. The dimensionless plotted quantity is
(�/⇠loc) (~4/m2�4V 2

0 ) in linear scale (left plot) and log scale (right plot), for two values
of the disorder strength V0m�2/~2 = 0.01 (black curve) and 0.05 (red curve). The dashed
green curve is ⇡(1 � x)/x2. Taken from [1].
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1/ Explain the meaning of the various parts of these diagrams.

2/ Compute Σ(k;E) at first order in V0. Interpret the result.

3/ Write the integral expression for the second order term (the so-called “Born ap-
proximation”). Show that the imaginary part of the “on-shell” self-energy (that is for
kE =

√
2mE/~) is given by :

Im Σ(kE;E) ' − mV 2
0

2~2kE
[C(0) + C(2kE)] (11)

where C(k) is the Fourier transform of the correlation function of the potential

V 2
0 C(k)

def
=

∫ +∞

−∞
dy
[
〈V (x0)V (x0 + y)〉 − 〈V (x0)〉2

]
e−iky (12)
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Deduce the expression for 1/kE`(E) where `(E) is the scattering mean free path. Which
physical phenomena are respectively associated with C(0) and C(2kE)?

C. Localization length

1/ Preliminary : a Fourier transform.– By a simple argument (no need of an explicit
calculation), justify that C(k) deduced from (6) is a triangle function ∝ (1−|k|/a) θH(1−
|k|/a), where θH is the Heaviside function, and give the width a.

Hint : Fourier transform of the sinc(x) function is the “door” function π θH(1− |k|).

2/ a) Explain why, when placed inside the 1D speckle potential, a cold atom is expected
to be Anderson localized. When scattering by the disorder is isotropic (C(k) is indepen-
dent on k), recall (without justification) how the localization length ξloc is related to the
scattering mean free path `.

b) When scattering is not isotropic (i.e. forward and backward scattering have different
probabilities), the simple relation discussed in 2.a must be understood as a relation be-
tween the localization length ξloc and the transport mean free path `tr. The transport
mean free path `tr is obtained by changing C(0) → C(2k) in the expression of the mean
free path ` (we now simplify the notation as kE → k and omit the E dependences).

c) Show that the inverse of the localization length is given by :

1

ξloc

' πm2 V 2
0 σ (1− kσ) θH(1− kσ)

~4k2
. (13)

d) Fig. 2 shows the numerically computed inverse localization length 1/ξ
(num)
loc versus kσ

[1]. Comment this figure. Especially, what is the problem around kσ = 1? How should
the above analysis be adapted in order to explain the numerics for kσ > 1?

Figure 2: Numerically computed inverse localization length for a 1D particle in a disor-
dered “speckle” potential, versus. the parameter kσ. The dimensionless plotted quantity is
(σ/ξloc) (~4/m2σ4V 2

0 ) in linear scale (left plot) and log scale (right plot), for two values
of the disorder strength V0mσ

2/~2 = 0.01 (black curve) and 0.05 (red curve). The dashed
green curve is π(1− x)/x2. Taken from [1].

e) Discuss briefly what happens if a Gaussian laser beam (see section Part 1.C) is used
in place of a square aperture?
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D. Experimental results Using a cold atomic cloud of Rubidium and a speckle optical
potential, Billy et al. [2] have observed 1D Anderson localization. Figure 3 shows the
experimental results, where the measured localization length is plotted versus the disorder
strength. The energy of the atoms was such that kσ ≈ 0.65 and σ ≈ 0.26µm. Comment
these experimental results. What is the order of magnitude of the product k`? What will
happen if the same experiment is performed in 2D or 3D?
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Figure 3. Localization length vs amplitude of the 
disordered potential. Lloc is obtained by an exponential fit to 
the wings of the stationary localized density profiles, as shown 
in Fig. 2. The error bars correspond to a confidence level of 
95% of the fit (corresponding to ± 2 s.e.m.). The number of 
atoms is Nat = 1.7 x 10

4
 (µin = 219 Hz). The dash-dotted line 

represents formula (1), where kmax is determined from the 
observed free expansion of the condensate (see Methods). 
The shaded area represents uncertainty associated with the 
evaluation of kmax and the evaluation of σR. Note that the 

limited extension of the disordered potential (4 mm), allows us 
to measure values of Lloc up to  about 2 mm. 

An exponential fit to the wings of the density profiles yields 

the localization length Lloc, which we can compare to the 

theoretical value
13

 

   

L
loc
=

2h
4
k

max

2

!m
2
V

R

2"
R

(1# k
max
"

R
)

, (1) 

valid only for kmax σR  < 1 (m is the atomic mass). To ensure 

that the comparison is meaningful, we first check that we 

have reached a stationary situation where the fitted value of 

Lloc no longer evolves, as shown in Fig. 2. In Fig. 3, we plot 

the variation of Lloc with the amplitude of the disorder, VR, for 

the same number of atoms, i.e. the same kmax. The dash-

dotted line is a plot of Equation (1) for the values of kmax and 

σR determined as explained above. It shows quite a good 

agreement between our measurements and the theoretical 

predictions : with no adjustable parameters we get the right 

magnitude and general shape. The shaded area reflects the 

variations of the dash-dotted line when we take into account 

the uncertainties on σR and kmax. The uncertainty in the 

calibration of VR does not appear in Fig.3. We estimate it to 

be not larger than 30 %, which does not affect the agreement 

between theory and experiment. 

An intriguing result of ref 13 is the prediction of density 

profiles with algebraic wings when kmax σR > 1, i.e. when the 

initial interaction energy is large enough that a fraction of the 

atoms have a k-vector larger than 1 / σR , which plays the role 

of an effective mobility edge. We have investigated that 

regime by repeating the experiment with a BEC containing a 

larger number of atoms (1.7 x 10
5
 atoms and µin / h = 519 Hz) 

for VR / µin = 0.15. Figure 4a shows the observed density 

profile in such a situation (kmax σR = 1.16 ± 0.14 (±2 s.e.m.)), 

and a log-log plot suggests a power law decrease in the 

wings, with an exponent of 1.95 ± 0.10 (±2 s.e.m.), in 

agreement with the theoretical prediction of wings decreasing 

as 1/z
2
. The semi-log plot in inset confirms that an 

exponential would not work as well. To allow comparison, 

we present in Figure 4b a log-log plot and a semi-log plot for 

the case kmax σR  = 0.65 with the same VR / µin = 0.15, where 

we  conclude in favour of exponential rather than algebraic 

tails. These data support the existence of a cross-over from 

exponential to algebraic regime in our speckle potential. 

Direct imaging of atomic quantum gases in controlled 

optical disordered potentials is a promising technique to 

investigate a variety of open questions on disordered 

quantum systems. Firstly, as in other problems of condensed 

matter simulated with ultra-cold atoms, direct imaging of 

atomic matter-waves offers unprecedented possibilities to 

measure important properties, such as localization lengths. 

Secondly, our experiment can be extended to quantum gases 

with controlled interactions where localization of quasi-

particles
26,27

, Bose glass
14,15,28

 and Lifshits glass
29

 are 

expected, as well as to Fermi gases and to Bose-Fermi 

mixtures where rich phase diagrams have been predicted
30

. 

The reasonable quantitative agreement between our 

measurements and the theory of 1D Anderson localization in 

a speckle potential
 
demonstrates the high degree of control in 

our set-up. We thus anticipate that it can be used as a 

quantum simulator for investigating Anderson localization in 

higher dimensions
31,32

, first to look for the mobility edge of 

the Anderson transition, and then to measure important 

features at the Anderson transition that are not known 

theoretically, such as critical exponents. It will also become 

possible to investigate the effect of controlled interactions on 

Anderson localization. 

Figure 3: Localization length for a cloud of cold Rubidium atoms in a disordered “speckle”
optical potential, versus the strength V0 (here noted VR) of the disorder. Experimental
parameters are such that kσ ≈ 0.65 and σ ≈ 0.26µm. The experimental results with error
bars are the blue points, the prediction of eq.(13) shown by the red dash-dotted line. The
shaded area reflects the uncertainties on the parameters. Taken from Ref. [2].
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Answers

Part 1: speckle

A. Diffraction by a square aperture.– Because the plane wave is perpendicular to
the aperture, the amplitude is uniform at z = 0, so that :

E(kx, ky) = A L2 sinc

(
kxL

2

)
sinc

(
kyL

2

)
(14)

and

I(kx, ky) = A2 L4 sinc2

(
kxL

2

)
sinc2

(
kyL

2

)
. (15)

B. Diffraction by a diffusive plate.
1/ The phase φ(x, y) of the field is uniformly distributed, hence 〈A(~r)〉 = A

∫ 2π

0
dφ
2π

eiφ = 0.
Similarly for 〈A(~r)2〉 = 0. The squared modulus is of course independent of the phase, so
that only 〈A(~r)A∗(~r)〉 = |A(~r)|2 = A2 survives.

Discretizing (1) as E(~k) = η2
∑N

n=1A(~rn) ei~k·~rn makes clear that the field is the sum
of a large number of uncorrelated random variables. Hence we can apply the central
limit theorem, which implies that the distribution of E is Gaussian. We have 〈E(~k)〉 = 0,

〈E(~k)2〉 = 0 and

〈|E(~k)|2〉 = η4
∑

n,m

〈A(~rn)A∗(~rm)〉︸ ︷︷ ︸
A2 δn,m

ei~k·(~rn−~rm) = η4NA2 = η2L2A2 = I0

is the averaged intensity. If we decompose the electric field as E = X+iY , we deduce from
〈E2〉 = 〈X 2〉 − 〈Y2〉+ 2i 〈XY〉 = 0 that the two components are uncorrelated, 〈XY〉 = 0,
with same variance 〈X 2〉 = 〈Y2〉 (isotropy). As a result the distribution of the electric
field has the form PE(E , E∗) ∝ exp

[
−(1/2c)

(
X 2 +Y2

)]
. Using that the averaged intensity

is 〈I〉 = 〈|E|2〉 = 〈X 2〉+ 〈Y2〉 = 2 〈X 2〉 = 2c
def
= I0 we finally deduce the form

PE(E , E∗) =
1

πI0

e−|E|
2/I0 . (16)

2/ The distribution of the intensity is given by writing the field in polar coordinates

E = R eiφ and P (I)dI = RdR
∫ 2π

0
dφPE(E , E∗) = d(R2)/2

∫
dφPE(E , E∗), hence the

Rayleigh law

P (I) = πPE(E , E∗) =
1

I0

e−I/I0 .

The most probable value is thus I = 0. The first moments are 〈I〉 = I0 and 〈I2〉 = 2I2
0 ,

hence Var(I) = I2
0 = 〈I〉2.

3/ a) Correlations are conveniently computed with the discrete formulation

〈E(~k)E∗(~k ′)〉 = η4
∑

n,m

〈A(~rn)A∗(~rm)〉 ei~k·~rn−i~k ′·~rm = η4A2
∑

n

ei(~k−~k ′)·~rn

=
I0

L2

∫ L/2

−L/2
dx

∫ L/2

−L/2
dy ei(~k−~k ′)·~r
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so that :

〈E(~k)E∗(~k ′)〉 = I0 sinc

(
∆kxL

2

)
sinc

(
∆kyL

2

)
(17)

b) E is Gaussian, therefore we can use Wick’s theorem :

〈I(~k) I(~k ′)〉 = 〈E(~k)E∗(~k)〉〈E(~k ′)E∗(~k ′)〉︸ ︷︷ ︸
=I20

+ 〈E(~k)E∗(~k ′)〉〈E(~k ′)E∗(~k)〉︸ ︷︷ ︸
=|〈E(~k)E∗(~k ′)〉|2

+ 〈E(~k)E(~k ′)〉〈E∗(~k)E∗(~k ′)〉︸ ︷︷ ︸
=0

(recall that there are (2n− 1)!! manners to make n pairs from 2n variables).
Higher moments : 〈In〉 = 〈EE∗ · · · EE∗〉. There are n! manners to pair the n amplitudes

to the n complex amplitudes, thus 〈In〉 = n! 〈|E|2〉n = n! In0 , which are indeed the moments
of the exponential law (2).

4/ a) To transform the angularly correlated intensity distribution into a spatially cor-
related one, the easiest way is to add a converging lens and look in the focal plane. A
ray with direction ~k in the plane (xOz) characterized by the angle θ such that tan θ =
kx/kz ≈ kx/k0 is thus at position x/f = tan θ in the focal plane, hence

∆~r ' ∆~k

k0

f (18)

so that :

hE(~k)E⇤(~k 0)i = I0 sinc

✓
�kxL

2

◆
sinc

✓
�kyL

2

◆
(17)

b) E is Gaussian, therefore we can use Wick’s theorem :

hI(~k) I(~k 0)i = hE(~k)E⇤(~k)ihE(~k 0)E⇤(~k 0)i| {z }
=I2

0

+ hE(~k)E⇤(~k 0)ihE(~k 0)E⇤(~k)i| {z }
=|hE(~k)E⇤(~k 0)i|2

The third contraction would be hEEihE⇤E⇤i = 0 (recall that there are (2n�1)!! manners to make
n pairs from 2n variables).

Higher moments : hIni = hEE⇤ · · · EE⇤i. There are n! manners to pair the n amplitudes to
the n complex amplitudes, thus hIni = n! h|E|2in = n! In

0 , which are indeed the moments of the
exponential law (2).

4/ a) To transform the angularly correlated intensity distribution into a spatially correlated
one, the easiest way is to add a converging lens and look in the focal plane. A ray with direction
~k in the plane (xOz) characterized by the angle ✓ such that tan ✓ = kx/kz ⇡ kx/k0 is thus at
position x/f = tan ✓ in the focal plane, hence

�~r ' �~k

k0
f (18)

F’ x

F
θ

f

Figure 4: The atoms in the focal plane feel the disordered potential characterized by the correla-
tions (4).

b) The quasi-resonant laser field modifies the internal energy levels of the atom (light-shift). By
energy conservation, this creates for the atom center of mass an e↵ective potential proportional
to the laser intensity I(~r) and inversely proportional to the detuning �. The atom “feels” a
potential V (~r) / I(~r), thus

hV (~k) V (~r 0)i / hI(~k) I(~k 0)i = I2
0


1 + sinc2

✓
�x

�

◆
sinc2

✓
�y

�

◆�

with � = 2f/(k0L) = f�0/(⇡L), where we made use of (18). Because of the paraxial approxi-
mation L/f must be small. The shortest achievable correlation length is of the order of �0.

C. Gaussian aperture.– A Gaussian beam arrives on the di↵usive plate, A(~r) = A exp[�~r 2/(2r2
0)]

(just before the plate). Using the Fraunhofer formula, we obtain that the correlation function
of the field after the di↵usive plate is

hE(~k)E⇤(~k 0)i = ⌘2A2

Z
d~r ei(~k�~k 0)·~r

⇣
e�~r 2/(2r2

0)
⌘2

= Ĩ0 e��~k 2r2
0/4

with Ĩ0 = ⇡r2
0 ⌘

2A2. The intensity correlations are

hI(~k) I(~k 0)i = Ĩ2
0

h
1 + e��~k 2r2

0/2
i

.

The potential correlations for the atoms are Gaussian as well.
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Figure 4: The atoms in the focal plane feel the disordered potential characterized by the
correlations (4).

b) The quasi-resonant laser field modifies the internal energy levels of the atom (light-
shift). By energy conservation, this creates for the atom center of mass an effective poten-
tial proportional to the laser intensity I(~r) and inversely proportional to the detuning δ.
The atom “feels” a potential V (~r) ∝ I(~r), thus

〈V (~k)V (~r ′)〉 ∝ 〈I(~k) I(~k ′)〉 = I2
0

[
1 + sinc2

(
∆x

σ

)
sinc2

(
∆y

σ

)]

with σ = 2f/(k0L) = fλ0/(πL), where we made use of (18). Because of the paraxial
approximation L/f must be small. The shortest achievable correlation length is of the
order of λ0.

C. Gaussian aperture.– A Gaussian beam arrives on the diffusive plate, A(~r) =
A exp[−~r 2/(2r2

0)] (just before the plate). Using the Fraunhofer formula, we obtain that
the correlation function of the field after the diffusive plate is

〈E(~k)E∗(~k ′)〉 = η2A2

∫
d~r ei(~k−~k ′)·~r

(
e−~r

2/(2r20)
)2

= Ĩ0 e−∆~k 2r20/4
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with Ĩ0 = πr2
0 η

2A2. The intensity correlations are

〈I(~k) I(~k ′)〉 = Ĩ2
0

[
1 + e−∆~k 2r20/2

]
.

The potential correlations for the atoms are Gaussian as well.

Part 2 : localization of an atom

A. Structure of the Green functions

1/ a) Free Green function : G̃0(k, k′;E) = 〈φk |(E −H0 + i0+)−1|φk′ 〉 = δk,k′ (E − εk +
i0+)−1 with εk = ~2k2/(2m).

b) The corresponding expression in x-space is

G0(x, x′;E) =

∫
dk

(2π)

eik(x−x′)

E − εk + i0+
=

m

i ~2kE
eikE |x−x′| where kE

def
=
√

2mE/~ . (19)

Integral is easily computed with residue’s theorem by closing the contour by a semi-circle
of radius R →∞ in the upper (lower) plane for (x− x′) > 0 (< 0, resp.).

2/ The Green function is defined by G(E) = 1/(E − H + i0+) and satisfies the Dyson
equation G = G0 +G0V G.

The Green function is different for every realization of the disorder. Its average de-
scribes the spatio-temporal evolution of the average field (NOT the average intensity).
The Dyson equation for the averaged Green function is

G = G0 +G0 ΣG , (20)

and corresponds to a reorganisation of the perturbative expansion in terms of irreducible
diagrams. We deduce Eq. (8).

Translational invariance is restored after disorder averaging, which implies that G and
Σ are diagonal in the k-representation : 〈φk |Σ(E)|φk′ 〉 = Σ(k;E) δk,k′ .

3/ In real space we have

G(x, x′;E) =

∫
dk

(2π)

eik(x−x′)

E − εk − Σ(k;E)
. (21)

In the weak disorder limit, |Σ(k;E)| � |E|, the poles k± of the integrand, i.e. zeros of
E − εk − Σ(k;E), are only slightly shifted and remain close to ±kE. Thus, assuming
that Σ is a smooth function we can simply perform the substitution Σ(k;E)→ Σ(kE;E).
Expanding the position of the poles for small Σ gives

k± ' ±
√

2m

~2
(E − Re Σ)

︸ ︷︷ ︸
def
= k̃E'kE

(
1− i Im Σ

2E

)

we see that the calculation of G is the same as the one of G0, provided the substitution

kE −→ k̃E −
im

~2kE
Im [Σ(kE;E)] .
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Making this substitution in Eq. (19), we obtain the structure

G(x, x′;E) ≈ G0(x, x′;E) exp

(
−|x− x

′|
2`(E)

)

with
1

`(E)
def
= − 2m

~2kE
Im [Σ(kE;E)]

Re Σ appears as a (negative) correction to the energy due to the average disorder. It is
a simple shift of the energy axis. `(E) is of course the mean free path for atom with
energy E. It corresponds to the typical distance between two collisions on the disorder
(`(E)/vE is the lifetime of the plane wave).

B. Born approximation.
1/ Cf. lecture’s notes. The perturbative expansion of G reads

G = G0 +G0V G0 +G0V G0V G0 + · · ·

2/ We deduce Σ = V0 + · · · at lowest order. This is a (trivial) shift in energy due to
〈V 〉 = V0 6= 0.

3/ Next leading order gives Σ = V0 + V G0V + · · · . We sandwich the expression between
two plane waves :

Σ(k;E) = V0 + 〈φk |V G0(E)V |φk 〉+ · · · = V0 +
∑

k′

|〈φk |V |φk′ 〉|2G0(k′;E) + · · ·

Introducing the correlation function of the disorder we easily get

Σ(k;E) ' V0 + V 2
0

∫
dk′

2π
G0(k′;E) C(k − k′)

The important part is the imaginary part. Using that Im[G0(k′;E)] = −π δ(E − εk′) we
finally obtain

Im [Σ(k;E)] ' − mV 2
0

2~2kE
[C(k − kE) + C(k + kE)] .

As we have seen the elastic mean free path involves the “on-shell” self energy

Im [Σ(kE;E)] ' − mV 2
0

2~2kE
[C(0) + C(2kE)] ,

where the two terms are interpreted as the contributions of forward scattering ∝ C(0)
and backward scattering ∝ C(2kE).

This leads to the formula for the elastic mean free path

1

`(E)
' m2V 2

0

~4k2
E

[C(0) + C(2kE)] . (22)

C. Localization length.
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1/ A Fourier transform.– The Fourier transform of sinc(xa/2) is the “door”
∫

dx sinc(xa/2) e−ikx =
(2π/a)Πa(k) where Πa(k) = θH(a/2 − |k|) (the converse is easy to check). The Fourier
transform of sinc2(xa/2) is therefore the convolution (2π/a2)(Πa ∗ Πa)(k). In order to
avoid an explicit calculation, we now make two remarks :
(i) (Πa ∗ Πa)(0) =

∫
dkΠa(k) = a.

(ii) the overlap between Πa(k
′) and Πa(k − k′) increases linearly with k and vanishes for

|k| > a, hence (Πa ∗ Πa)(k) = a(1− |k|/a) θH(1− |k|/a).
We deduce

C(k) = π σ

(
1− |k|σ

2

)
θH

(
1− |k|σ

2

)
.

2/ a) In 1D, any disorder with short range correlations leads to strong localization of all
eigenstates (no mobility edge). In the lecture we have noticed that in 1D the mean free
path and the localisation length are related by ξloc ' 2` (in the weak disorder regime),
which is valid for C(k) = cste, when scattering is isotropic (forward=backward scattering),
i.e. 〈V (x)V (x′)〉 ∝ δ(x − x′). Hence, the perturbative calculation of the Green function
has provided a (perturbative) formula for the localization length.

b) When scattering is not isotropic (i.e. forward and backward scattering have different
probabilities), we have to take into account that only backward scattering leads to local-
ization. This remark explains that one should perform the subtitution C(0) → C(2k) in
the formula for the elastic mean free path :

1

ξloc

' 1

2`tr

' m2V 2
0

~4k2
E

C(2kE)

where we have used (22).

c) Using the expression of the correlation function computed previously, C(2k) = π σ (1−
|k|σ) θH(1− |k|σ), we end with

1

ξloc

' πm2 V 2
0 σ

~4k2
E

(1− kEσ) θH(1− kEσ)

d) The figure shows that the theoretical prediction is not too bad. As expected for an
expansion in powers of the disorder strength, it works better at small V0. It always fail
at low-k (small energy) because the self-energy Σ(E) is no longer much smaller than E.

The perturbative expression of the inverse localization length vanishes when the energy
is above a threshold, i.e. for kE > 1/σ. This should however not be interpreted as a
mobility edge! In 1D, localization takes place at any energy. A calculation involving
higher order contributions to Σ indeed predicts a finite localization length [1], in agreement
with the numerics. For small V0, the vanishing of the second order contribution manifests
as the “accident” (step like behaviour). As expected, the step is less pronounced for
larger V0.

D. Experimental results.— The observed localization length decays with increasing
V0, but the 1/V 2

0 prediction is not very good. This is partly because one should include
higher-order contributions in V0 and partly due to experimental problems (difficulty of
measuring long localization lengths at small V0, residual atom-atom interaction killing
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localization at large V0). As ξloc/σ is at least 100, the formula shows that k` is at least
as large. In 2D, this would result in a huge localization length, scaling like exp(k`),
thus larger than the size of the universe ; in 3D, it would be on the diffusive side of the
Anderson metal-insulator transition.
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