Outline of the lectures

- I. Quantum theory of transport (2 hours)
- II. Weak localization (1 hour)
- III. Coherent Back-Scattering (CBS) (1.5 hours)
- IV. Anderson (strong) localization Scaling theory (2 hours)
- V. Self-consistent theory of localization (1 hour)

Dominique Delande Laboratoire Kastler-Brossel

Ecole Normale Supérieure, Université Pierre et Marie Curie, Collège de France (Paris)

http://www.lkb.upmc.fr/complexquantumsystems/

Dominique.Delande@lkb.upmc.fr

Long time dynamics: towards Anderson localization

Anderson localization takes a VERY long time!

Experiment on localization of atomic matter waves

J. Billy et al, Institut d'Optique (Palaiseau, France), Nature, 453, 891 (2008)

Experiment on localization of atomic matter waves

1d Anderson localization of atomic matter waves

The final atomic density shows exponential localization with localization length of few 100µm!

J. Billy et al, Institut d'Optique (Palaiseau, France), Nature, 453, 891 (2008)

Comparison between the measured and calculated localization lengths

J. Billy et al, Institut d'Optique (Palaiseau, France), Nature, 453, 891 (2008)

Anderson localization in 2d photonic lattices

T. Schwartz et al, Nature, 446, 52 (2007)

Phase diagram of the 3d Anderson model

B. Kramer and A. McKinnon, Phys. Rep. 56, 1469 (1993)

Numerical experiments on the Anderson model

A. MacKinnon and B. Kramer, PRL, 47, 1546 (1981)

3D Anderson transition

3D speckle disorder potential (repulsive potential)

A transition from diffusive to localized states in strong disorder

3D Anderson transition

Energy

Disorder

(fixed)

amplitude $V_{
m R}$

Localized states (low energy)

3D speckle disorder potential (repulsive potential)

Objectives

Estimate the position of the mobility edge and compare with quantitative predictions

Study critical regime (longer term) (critical exponents, multifractality....)

3D Anderson transition

3D speckle disorder potential (repulsive potential) **3D laser speckle disorder** Extremely low classical trapping probability

Atoms "turn around" the speckle grains

 $E_{\rm cl} \sim 10^{-4} V_{\rm R}$

Pilati et al. PRL (2009), NJP (2010)

Palaiseau, ⁸⁷Rb (bosons) 3D laser speckle disorder + <u>levitation</u> Jendrzejewski et al. Nat. Phys. (2012)

"Quantum disorder" regime for the matterwave propagation (extremely dilute and very cold BEC)

$$T \sim 3 \text{ nK}$$

 $\mu_{\text{in}} = 40 \text{ Hz}$

$$\left[\begin{array}{c} \text{• Large deBroglie wavelength} & \lambda_{\mathrm{dB}}\sim 6\ \mu\mathrm{m} \\ \\ \text{• Thin speckle grain} & \sigma_{\mathrm{R}}\sim 0.25\ \mu\mathrm{m} \end{array} \right]$$

Can we observe localization when pushing the system towards the strong disorder regime ?

A good news: observation of an 3D Anderson localized component

A good news: observation of an 3D Anderson localized component

Important: Need very long propagation times to differenciate between very slow diffusion and localization

5

Time (sec)

6

 $\sigma_{\rm rms}^2(t) = \sigma_0^2 + 2Dt$

A good news: observation of an 3D Anderson localized component

 \Box A bad news: a diffusive component at the same time

Strong disorder to achieve localization (Hard to localize)

 $k l_{\rm B} \sim 1$

Spreading of the energy Distribution (fast switch on)

A good news: observation of an 3D Anderson localized component

 \Box A bad news: a diffusive component at the same time

 \Box Estimation of the mobility edge from:

- 1. Localized fraction (experimental profiles)
- 2. Energy distribution (from numerics)

\checkmark "Not so bad" but :

- too early to conclude
- Indirect measurement

(need to know the energy distribution from numerics)

Anderson localization of electromagnetic waves

- All claims of experimental observation of Anderson localization of light have been withdrawn, see S.E. Skipetrov and J. Page, NJP 18, 021101 (2016)
- Observation with microwaves (transmission and fluctuations):

Anderson localization of acoustic waves

- Packed (disordered) aluminium beads
- Inject acoustic wave at a given point

- Look at the spatial profile of the transmitted intensity
 - In the diffusive regime, expect a Gaussian profile (even in the presence of absorption!)
 - Theory uses a position-dependent diffusion coefficient (B. v. Tiggelen et al, LPMMC Grenoble)
 - Experiment in the group of J. H. Page (Winnipeg)

Anderson localization of acoustic waves

Spatial profile on the outgoing faceTotal transmitted intensityH. Hu et al, Nat. Phys. 4, 495 (2008), group of J. H. Page (Winnipeg)

Anderson localization of acoustic waves: fluctuations Diffusive regime Localized regime

H. Hu et al, Nat. Phys. 4, 495 (2008), group of J. H. Page (Winnipeg)
 See also multifractality of the intensity distribution:
 S. Faez et al, PRL 103, 155703 (2009)

The atomic kicked rotor: a simple system to study transport and localization

- **1D** Hamiltonian
 - Standard kicked rotor:

- Standard kicked rotor:
- Quasi-periodically kicked rotor:
$$H = \frac{p^2}{2} + K \cos x \sum \delta(t - n)$$

$$H = \frac{p^2}{2} + K \cos x \left[1 + \varepsilon \cos \left(\omega_2 t\right) \cos \left(\omega_3 t\right)\right] \sum \delta(t - n)$$

- Classically chaotic dynamics => (deterministic) pseudo-disordered system.
 - Standard kicked rotor: 1D Anderson-like model
 - With (d-1) quasi-periods : Anderson model in dimension d.
- Experiment with cold Caesium atoms in the group of J.C. Garreau and P. Szrifgiser (Phlam, Lille).
 - Observation of 1D localization: F. Moore et al, PRL 73, 2974 (1994)
 - 3D localization and metal-insulator transition with the first measure of the critical exponent: J. Chabé et al, PRL 101,255702 (2008)
 - Universality of the critical exponent: M. Lopez et al, PRL, 108, 095701 (2012)
 - Dynamics at the critical point: G. Lemarié et al, PRL 105, 090601 (2010)
 - Exponential dependence of the localization length in 2D: I. Manai et al, PRL 115, 240603 (2015)
 - Controled breaking of time-reversal symmetry and observation of enhanced return to origin: C. Hainaut et al, arxiv: 1606.07237

Scaling function deduced from self-consistent theory of localization

P. Wölfle and D. Vollhardt, *Self-Consistent Theory of Anderson Localization: General Formalism and Applications, a*rXiv: 1004.3238

Self-consistent theory of localization for the Anderson model (box disorder)

D. Vollhardt and P. Wölfle, *Self-consistent theory of Anderson Localization*, in: W. Hanke and Y. V. Kopaev, editors, *Electronic phase transitions* (Elsevier, Amsterdam, 1992)