

=0 Mesoscopic Superconductivity -Assume you know superconductivity but have forgotten most of it! Reminders on BCS theory TU AM I. HP - Coope pairs . Gap -> We PM II. Small synconductors CB $\Delta \Rightarrow \xi = \frac{\hbar V_F}{L} \text{ or } \int \frac{\hbar D}{\Lambda}$ In a B field · London length the for screening What happen if L < 2 ? Role of § ? . Mesosupic hansport Thu AM TIT HP+CB N conductors -> Landauer formalism -> LB formula QPC N-S, 5-S weak links => equivalent description ? 2 -> ABS, Shiba states, Josephin effect, currents 10 and supercurrents 1 Changing effects Fri AM IV HP Small superanductors with respect to C: (20) > A 10 =) parity effects . Superconducting public Proximity effect \Rightarrow Sa PN V CB Describe hybrid structure at 1 5 th D For ESA

-From BCS to BAG : representations of S-perconductors -BCS (1957); based on (phonon-medicated) attraction between Cooper pairs K'T di. ×-~+ -kJ EKCHOLS - VZC+C+CKEK 10 1 t 1 1 2 m 11 4 Mean-Rield theory in grand- canonical ensemble ; $(fix{\mu}, wet N) = \sum_{k, v} \xi_{k} c^{\dagger} c_{kv} - V (Z c^{\dagger} c^{\dagger}_{k})$ $H - \mu N = \sum_{k, v} \xi_{k} c^{\dagger}_{kv} c_{kv} - V (Z c^{\dagger}_{k} c^{\dagger}_{k})$ -0 x (Z C K, C K) E pe : energies countrol from Fermi L. ų D $= \langle D \rangle + (D - \langle D \rangle)$ Z CKI CKT Ξ = d assumed small B $D^{\dagger}D = (\langle D^{\dagger} \rangle + d^{\dagger})(\langle D \rangle + d)$ -0 = < 0 * > < 0> + d * < 0> + d < 0 > + d < 0 > + d = d . D*- <D*> D-<>> 1 $\underline{} D^{\dagger} \langle D \rangle_{+} D \langle D^{+} \rangle_{-} \langle D^{+} \rangle \langle D \rangle$ Directly : if a by have small variations around this average, 2 M = (x - (n) (y - (y)) + x < y > + < x > y - < x > < y > second order

A

[vaccuum] = no "electron", no "hole"	- Recover " uprimal " ground state. D=0
opin 1 states opin & states unoccupied all occupied !	$= \int U_{k} = 0 \text{for } \xi_{k} < 0 1 \text{for } \xi_{k} > 0$
$ BCS\rangle = \Pi (-v_{1} e^{i\varphi} c_{1}^{+} + u_{1} c_{1}) \Pi c_{1}^{+} 0\rangle$	$\Rightarrow N\rangle = TT (-e^{i\varphi})c_{Te} c_{Te} TT (+a) 0\rangle$
(gather terms k and k'=-k)	all states at k (K, are doubly occupied (T)) (global phase not relevant)
$= \prod \left(-v_{R} e c_{RT}^{T} c_{-KU}^{T} + v_{R} c_{-KU}^{T} c_{-KU}^{T} \right) 0 \rangle $	- In IBCS>, only states close to Fermi energy
$= \frac{TL}{k} \left(-v_{k} e^{i\varphi} c_{kT}^{\dagger} c_{-\kappa L}^{\dagger} + u_{k} \right) \left 0 \right\rangle $	 (K r K r, E not too large) are different from what they are in [N].
$= \prod \left(\frac{\psi}{k} e^{i\psi} \right) + \frac{\psi}{k} \left \frac{\psi}{k} \right + \frac{\psi}{k} \left \frac{\psi}{k} \right = \frac$	Representations of a myaconductor:
<u>M</u> . Not e ⁻ pairs but superposiθs of pair	
· Product state on all Kr, not (K) < Kr	
· Phase Q is the same for all ks !	
	 K-Space & -space DOS excitation Spectrum representation

cbs.

		From BCS to BdG equation
mpare with	eq. obtained at T=D: 1=g ln 2r	Gp.2: in 2 nd quantization,
the - 2A	$= \frac{28}{\pi} \frac{1}{k_{\rm s}} T_{\rm c}$	$\frac{\partial b}{\partial k} = \sum_{k} \left(e_{k}^{\dagger} + h_{k}^{\dagger} \right) \left(\frac{z_{k}}{\Delta^{k}} - \frac{z_{k}}{\beta_{k}} \right) \left(\frac{z_{k}}{h_{k}} \right)$
$\rightarrow \Delta_{o}$	- = T ~ 1.76 Al: (A = 2.1kg + -	When It contains a term that depends on position (like
ο : Δ(T),	uery flat because for Exchate	A(r), or any non-translation invariant geometry) need
	th BE n e BE (K 1 New few grs	to solve Schrödinger og, in real-space representation with
ė	$\frac{1}{T_{c}} \rightarrow T$	$\Psi(x) = (a(x)) - 2 - component wave tunction with (b(x)) (a(x)) : electron any litude$
T_) = 0.9	16 D Characteristic of mean field theory	(b(x): hole amplitude
(2) $(0.9T_c) =$		(N.B. If spin matters, need an, as, by, bs)
		BAGeq: (H, A) (a) - E (a)
		where H , Δ , a , b are position - $dpd S$.
		by taking $(a(x)) - a e^{ikx}$
		$b(x) = b_{x}e^{ikx}$
		$\rightarrow \xi_k \land a_k \rangle = a_k \rangle$
		$A^* - \xi_{\kappa} / b_{\kappa} $

Match derivative of U at 2=0;	$a_{1}^{2} = \sqrt{\frac{E-S_{3}}{E-S_{3}}} = \frac{E-S_{3}}{E-\sqrt{E^{2}-\Delta^{2}}}$
(1) ket $- \psi(1)$ ke $+ a/o$ kh	$ E + S_{j} - VE - S_{j} - A$
	when C >> C, Ial -> C, C => 1. mole & mole
$= d \left(u_{h} \right) \left(-\kappa_{h}^{s} \right) + c \left(u_{e} \right) \kappa_{e}^{s}$	transmitted as quari-e because respendits e - 1
N date and a long the	$if E < \Delta, f \in i \mathbb{R} f = \frac{h^2 k_s^2}{2}$
Muareev approximation: Ne, h ~ F	sky has inaginary part: decays
$ \begin{array}{c} (3) \rightarrow (1) \\ (4) \end{array} - \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right\} + \left\{ \begin{array}{c} 0 \\ 1 \end{array} \right\} \\ \end{array} \\ \end{array} \\ \begin{array}{c} (4) \end{array} + \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right\} + \left\{ \begin{array}{c} 0 \\ 1 \end{array} \right\} \\ \end{array} \\ \begin{array}{c} (4) \\ (4) \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} (4) \\ (4) \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} (4) \\ (4) \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} (4) \\ (4) \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} (4) \\ (4) \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} (4) \\ (4) \end{array} \\ \end{array} $	on 5 : evanescent
$e_{-(4)}$; $d=0$ \rightarrow $a=cv_ee^{-iy}$	$V^{1} - (\frac{e}{a})^{*}$
$(1+(3))$; $2=2cu_e$, $c=\frac{1}{u_e}$, $a=\frac{v_e}{u_e}$	$A = \int \frac{E}{E} \frac{1}{5} \frac{1}{5$
1) - (31 : b = 0	
comments: b=0, a=0: reflection as a hole = AR	total pefl as hale
d=o,c=o: transmissions asquasi-e=	Phase acquired at reflection: Arg (a)
Amplitude of reflected hole is a - ve eight	
$ a _{\pm}\sqrt{\frac{E-\xi_{e}}{E-\xi_{s}}}$ (in N, E = energy of incident e	$\frac{1}{2} + \frac{1}{E+\xi} - \frac{1}{E+\xi}$
$I = + S_{S} \qquad in S, E = \sqrt{\Delta^{2} + \xi_{S}^{2}} \qquad $	$\frac{\xi - i \xi }{T} \rightarrow \frac{E^2 - \Delta^2 - \xi ^2}{E + i \xi }$
$F_{s} = \sqrt{E^{2} - \Delta^{2}}$	The A III Re
· if E>A, no pb, \$, >0 · 7 propagating	
queri-e at energy E	$Arg\left(E^{\dagger}S\right) = \frac{1}{2}\Theta \xrightarrow{1}_{2}Arg\left(E^{-S}\right) = -\Theta = Arcos = \frac{E}{\Delta}$

-

Pothier

BTK2. Nb

8:0.

0

let & = r_A^2

From AR to ABS & Josephson effect	
Remarks on AR : at 3D, a retroughtin	1-D SNS junction, first without scattering in N,
in along x, Ke x kh	& perfect interface
(Andrew approx)	SIN S S=4-4
	$\gamma_{L} = \gamma_{R}$
In tansverse direction, Ky is conserved.	$r_{A}(-\varphi_{L}) = \frac{e}{2\pi} e$
=> total Tic is conserved, but at same ti group	Photo acquited at 2 AR : Parce E 4 14
velocity of e & h are opposite , reboreflection .	while crossing N: (ke-kh) L
This is not the ease if A is not << EF because	= 2(ke-ke)L
re & Kh can be than significantly & . In	
graphene, M. R. can be at an angle, speculat, on	$E = \frac{\hbar^2}{2m} \left(\frac{k_e^2 - k_F^2}{m} \right) \frac{\pi^2}{m} \frac{\hbar^2}{m} K_F \left(\frac{k_e - k_F}{m} \right) = \frac{\hbar}{k_F} \frac{k_F}{k_e - k_F}$
even forbidden at certain angles : of Beenaldker,	$-\frac{2(\kappa_e-\kappa_F)L}{\pi V_F} = \frac{2E}{\pi V_F} L = \frac{2E}{\pi V_F} \Delta E L = \frac{2E}{5}$
PRL 97,067007(2006/	with $\mathcal{E} = \frac{\mathcal{E}}{\Delta}$, $\mathcal{B} = \frac{\mathcal{E} \vee \mathcal{F}}{\Delta}$ superc. coherence length Δ , Δ (1) before, \mathcal{F} was an energy!)
What BTK misses: in many situations,	- bound states when $2 \arccos \varepsilon + \delta + \frac{2}{\varsigma} \varepsilon = 0 [2\pi]$
bascattering in N region -> multiple points where	Same calc for e => = 2 arcor e = 5 + 2 E = 0 (2R)
MR can pictur -> constructive interference increasing	k (only sign of S changes)
greatly the total proba of AR - see later	$\int 2arces e = u \rightarrow e$ $\int 2arces e = u + 2\pi \rightarrow e$

33 --3 Parity effects in Superconducting islands (1) Charge on corpector - continuous variable charge on indated electrode : quantited (Hillikan) () () in unit of e Selectrode: quantitation in units of 20? -1 -3 1) N state : single electron box --0 Total energy (including work performed by source): 10 $\mathcal{E} = \frac{q^2}{2c} + \frac{q_3^2}{2c_9} + q_3 U \qquad \left(\frac{d}{dq} = 0 - sign \partial k\right)$ 10 $= \frac{q^2}{2c} + \frac{(q_g + c_g u)^2}{2c} + \frac{(c_g u)^2}{2c}$ 209 Q (9+92+ Cg U 0 99 + $V = \frac{9}{c}$ Use 10 eg (CfCg) ۲ $if = \frac{c}{b} = \frac{c}{d}, \quad then = \frac{a+c}{b+d}$ 10 $\Rightarrow \left(q = \frac{c}{c_{y}} \left(Q + c_{y} \right) \right)$ 10 $\begin{bmatrix}
 q_{g} + G_{y} = \frac{c_{g}}{c_{z}} (Q + G_{y})
\end{bmatrix}$ TO 10 -10 -

	873
	A
In the limit ky >> E, bands become flat	
~ insemitive to Ng noise ~ letter gub to:	
Ciansmon	6-30
They instead of considering coursing of paralite here	F. and
	5,
letter to consider potential - E, cos of and kineti	2"
term to N (in a first step, neglect Ng since	
expect little Ng - dependence of energy lards):	
$\mu = r \tilde{N}^2 F \tilde{A}$	
n = Een - Louso A	(FI)
$H = P^2$ $V \cos \hat{n}$	
2m	
E.) E. , large mass , state local ecd i	
potential well	
V(9)	
Many state in well	
263	
	929
Low energy states. And coop ~ 1 - 02, 0	
	4
HateNt E30- E30 + Ut	
24	
FIGITMOME OF GUARDOF => hWo (n+ 1)	0

5: position of fictitious particle	
5: velocity & Voltage V	
sind a current through II	
s. tilt of note-bial at s=1 moreland	$\delta_m \delta_M$
	$\delta = \alpha m \alpha \delta = \delta m \delta m \delta m \delta m$
	Om - Works On - II With s
as < 1, 1:0 : porticle trapped in 10 cal	$\Delta U = -3 \left(\partial_n - \partial_{y_n} \right) - \left(\partial_n \partial_n - \partial_n \right)$
$minimum : \int \delta = 0 \rightarrow V = 0$	$(D_{2} \delta_{M} = -cD_{2} \delta_{M} = -\sqrt{1-S^{2}}$
([8= arcrin \$ [217] -> I + 0	$\Rightarrow \Delta V = -s (T - 2 \operatorname{arcsin} s) + 2 V - s^2$
Josephson branch	$\frac{4\sqrt{2}}{7} (1-3)^{3/2} (exact at s = 1)$
At T=0, leave minimum only at s= 1 .	$6^{9}o^{-3}$ $s=0$
escape at I = Io, reglecting quarter .	Energy units : multiply inital cg. by 4. : EJ
fluctuations.	= Io Po is the natural energy wint
T+O: course vorite (Johnson - Nugwist)	$A V = 4 \sqrt{2} E_{-} (1 - 4)^{3/2}$
acon R - lluchestion of T - MA	
	. Thermal escape : Arrhenius law: I ave AT
B & B in = pominicing to escape at	Prefactor - "attempt frequency" = freq of oscillations
	in novential well minimum wo (exact calc :
Occurs if &T & barrier height	P. Hängg: Rev. hod Phys 62 251 (1930)
	001

B.T.K.

Conductance doubling: experiments

Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure

M. Kjaergaard,¹ F. Nichele,¹ H. J. Suominen,¹ M. P. Nowak,^{2,3,4} M. Wimmer,^{2,3} A. R. Akhmerov,² J. A. Folk,^{5,6} K. Flensberg,¹ J. Shabani,^{7,†} C. J. Palmstrøm,⁷ and C. M. Marcus¹ arXiv:1603.01852v1 Nat. Commun. 7, 12841 (2016)

BTK: conductance of ballistic NIS junction

ABS: long junction limit

Atomic contacts

11/2016

pushing rods

3 cm

Measurement of the current-phase relation

Metallic bridge (atomic contact)

$$30 \text{ nA} \approx I_{\text{max}} \ll I_t^0 \approx 0.7 \ \mu\text{A}$$

Measurement of the current-phase relation

 0.62 ± 0.01

0.115 0.11

0.11

0.12

FIG. 3 (color online). Symbols: measured switching current $[s^*(\varphi) - s_0]I_0$ as a function of applied flux ϕ/ϕ_0 , for the three SQUIDS corresponding to the contacts of Fig. 2. Curves AC3 and AC1 shifted for clarity. Dashed curves: predicted ground state current-phase relation $I_{\{\tau_i\}}^-(\delta)$. Full lines: predictions of resistively shunted SQUID theory at $T_{\rm esc} = 130$ mK on the basis of Eq. (1). The transmission sets indicated in Fig. 2 caption have been used for both theories.

Della Rocca et al., PRL 2007

Current-phase relation at τ =1

A. Murani et al., arXiv:1609.04848

MAR

Fig. 23. Schematic explanation of the subgap structure in superconducting contacts.

DETERMINATION OF TRANSMISSIONS V / (∆/e) 2 4 -4 -2 0 60 0.47 30 0.24 I (nA) 0.05 0 {0.47, 0.24, 0.05} -30 -60 -800 -400 400 800 0 V (µV) I-V characteristic $\left\{ \tau_{1},...,\tau_{N}\right\}$ Scheer *et al.* PRL 1997

ATOMIC SQUID COUPLED TO A COPLANAR MICROWAVE RESONATOR

 $\lambda/4$ on Kapton at 10GHz

Μ

Janvier et al., Science 349, 1199 (2015)

SPECTROSCOPY OF ANDREEV TRANSITION

TUNNEL SPECTROSCOPY OF ABS IN CARBON NANOTUBES

Pillet et al., Nature Physics 6, 965 (2010)

Pillet et al., Nature Physics 6, 965 (2010)

PARITY EFFECTS

Superconducting box

FIG. 1 Schematic diagram of the experiment. The superconducting island is a $30 \times 110 \times 2,260$ nm Al strip containing $\sim 10^9$ atoms.

Two-elect of the ch superconductor

& M. H. Devoret

NATURE · VOL 365 · 30 SEPTEMBER 1993

Service de Physique de l'Etat Condensé, CEA-Saclay, F-91191 Gif-sur-Yvette, France

P. Lafarge, P. Joyez, D. Esteve, C. Urbina

Superconducting box

FIG. 2 Variations of the average value \bar{q} , in units of e, with the polarization C_gU/e , at T = 28 mK, for three values of the magnetic field H applied to the sample. a, Non-superconducting island. b and c, Superconducting island. For clarity, b and c have been offset vertically by 2 and 4 units, respectively. The letters L and S refer to the long and short steps, respectively.

Measured free energy difference D(T)

VOLUME 70, NUMBER 7 PHYSICAL REVIEW LETTERS

15 FEBRUARY 1993

Measurement of the Even-Odd Free-Energy Difference of an Isolated Superconductor

P. Lafarge, P. Joyez, D. Esteve, C. Urbina, and M. H. Devoret

COOPER PAIR BOX

The single Cooper pair box

; g

 $\begin{array}{c}
 1 \text{ de} \\
 \hline
 9 \\
 \hline
 N \\
 \hline
 0 \\
 \hline
 0 \\
 \end{array}$

1 degree of freedom:

 $\left[\hat{\theta},\hat{\mathsf{N}}\right]=i$

2 characteristic energies:

Hamiltonian:

$$\hat{\mathsf{H}} = \mathsf{E}_{\mathsf{C}}(\hat{\mathsf{N}} - \mathsf{N}_{\mathsf{g}})^2 - \mathsf{E}_{\mathsf{J}}\cos\hat{\theta}$$

$$\mathsf{E}_{\mathsf{C}} = \frac{\left(2\mathsf{e}\right)^2}{2\left(\mathsf{C}_{\mathsf{g}} + \mathsf{C}_{\mathsf{J}}\right)}$$

$$E_{J} = \frac{h\Delta}{8e^{2}R_{t}}$$

 $N_g = C_g V_g/2e$

reduced gate charge

Measuring the Single Cooper Pair Box

V. Bouchiat *et al.*, Physica Scripta **76**, 165 (1998).

Manipulating the charge state in a Cooper pair box

but poor coherence,& no single-shot readout

Coherent control of macroscopic quantum states in a single-Cooper-pair box

Y. Nakamura*, Yu. A. Pashkin† & J. S. Tsai*

* NEC Fundamental Research Laboratories, Tsukuba, Ibaraki 305-8051, Japan † CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012, Japan

TRANSMON QUBIT

2μm