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What is Many-Body Localization ?

• Anderson localization + dephasing

A new distinct dynamical phase of matter, which does not self-thermalize

• Zero DC conductivity at finite temperature

• Key ingredients : Disorder + Interactions, Isolated system

«Many-body localization» (MBL) 

• Characteristics:

In general, expect interactions to induce transport and to thermalize an isolated localized system

Interactions

• Low entanglement



Why Many-Body Localization?

• Does a closed quantum system self-thermalize?

• Why is it an interesting problem? Mostly fundamental questions:

• Too many papers !!

• Is there a perfect insulator at finite temperature?

• What happens to Anderson localization in presence of interactions?

• Why is it a difficult problem?

• …

• All the tough ingredients are there : Quantum Many-Body interactions, 
disorder, out-of-equilibrium 

• Absence of thermalization: can’t use thermodynamic ensembles!

• Usual condensed matter methods geared towards low-energy properties



Eigenstate Thermalization Hypothesis

PREQUEL



Thermalization of isolated systems

• Eigenstate thermalization hypothesis (ETH)

in the thermodynamic limit and for few-body observables

hn|O|ni ' hn0|O|n0i = O(E)

hn|O|n0i vanish

in the same energy shell

Deutsch, Srednicki, Rigol …

|ni, |n0i

• ETH implies thermalization 

hO(t ! 1)i = O(E) = O(T ) E = h 0|H| 0i
E = hHiT

• Expand                                in eigenbasis of  | 0i =
X

i

an|ni

• Time-evolved observable (generic Hamiltonian)

hO(t)i =
X

n,n0

a⇤n0ane
�i(En0�En)tOnn0

t!1���!
X

n

|an|2Onn
‘Diagonal ensemble’

H =
X

n

En|nihn|

• Quench protocol: Evolve initial state with a (many-body) Hamiltonian

Q. : Does the system reach thermal equilibrium ?

| (t)i = exp(�iHt)| 0i



Consequences & Exceptions
• Each eigenstate is thermal, «knows» equilibrium

⇢(0) = |nihn| = ⇢(t) = ⇢eq(Tn) En = hHiTn

• ETH is a «justification» of the microcanonical ensemble at the individual eigenstate level

• Memory of initial conditions is lost

Many-Body Localized (MBL) systems

Old problem                              revived by an enormous amount of contributions!

‘Old’ Reviews (2015): Nandkishore & Huse, Altman & Vosk 
New reviews upcoming (Annalen der Physik)  

Anderson, Fleishmann,  
Shepelyansky...

t ! 1

Anderson (single-particle) localization 
• Exceptions to ETH : Integrable systems



Let’s start with a toy model …

Season 1 



Toy model to understand MBL

• Infinite disorder : eigenstates are fully localized product-states, no entanglement

• XXZ Spin 1/2 chain in a random magnetic field

hi 2 [�h, h]

• Beyond perturbation (numerics): localization can survive interactions

h
0

� 6= 0
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X
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h
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Sz

i

MBL

Eigenstates all different

For a given energy density (say middle of spectrum)

Thermal, «ergodic»

Eigenstates look all the same (~ Random Matrix Theory)

• Branch small interaction : perturbative calculations                                             indicate that 

thermalization does not occur: states keep localized, no spin or energy transport
Gornyi et al., Basko et al.

•                : non-interacting case. Maps to 1d Anderson model



ETH states versus MBL states
Ergodic states

Follow ETH Violate stat. mech.
MBL states

Observables are the same 
within the same energy shell

Observables differ from 
eigenstate to eigenstate
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Figure 2. Disorder averaged di↵erence of local magnetiza-
tions as a function of disorder strength in the middle (left)
and upper part (right) of the spectrum. For weak disorder,
eigenstates thermalize and the local magnetization of adja-
cent states becomes identical in the thermodynamic limit,
thus yielding a smooth function of energy. Here, the mobility
edge for the many body localization transition is also visible
as the region, in which adjacent states yield very di↵erent re-
sults – the MBL phase – is much larger in the upper part of
the spectrum at energy density ✏ = 0.8. The location of the
previously estimated12 critical disorder strength hc ⇡ 3.7 at
✏ = 0.5 and hc ⇡ 2.3 at ✏ = 0.8 is given by the dashed line.

ends of the spectrum, which successfully works down to
✏ = 0.85 for this size.

In Fig. 1 the variance of hn |Ŝz
i |ni for eigenstates |ni at

virtually the same energy decreases with system size for
a wide range of the spectrum. It should be noted that
the energy window in which the & 50 eigenstates clos-
est to the target energy lie decreases with system size,
clearly visible by inspecting for example the L = 12 and
L = 16 data. However, comparing data for adjacent
targets suggests that the decreasing variance6,9,13 of the
local magnetization is not an artefact of the decreasing
energy window size but rather a generic feature, leading
to a well defined decrease of adjacent state local magne-
tization di↵erences as shown in Fig. 2 with a power law
in the dimension of the Hilbert space, that we analyze in
Fig. 3 and discuss below.

At very high energy density, this is no longer true
and the variance of this local observable over di↵erent
eigenstates remains very large, thus breaking ETH. This
is fully consistent with the many body mobility edge
mapped in Ref. 12. Nevertheless, one should remain
cautious with this observation as for the present disorder
strength h = 1.0 the mobility edge lies close to the bound-
ary of the spectrum where finite size e↵ects are expected
to be large. Similarly, one expects a mobility edge at the
low end of the spectrum, which is even more di�cult to
resolve due to stronger finite size e↵ects, nevertheless the
variance of hn |Ŝz

5

|ni does not seem to decrease between

Figure 3. Finite size scaling of the disorder averaged di↵erence
of local magnetizations hn |Si

z|ni of adjacent eigenstates as a
function of the dimension of the Hilbert space dim(H). The
inset displays the (discrete) logarithmic derivative, yielding
the exponent of the power law in the thermodynamic limit,
which slowly approaches 0.5. The data presented here in-
cludes only states from the middle of the spectrum (✏ = 0.5).

the two largest system sizes around ✏ ⇡ 0.1.
In order to study the decreasing variance of the local

magnetization more rigorously, we calculate the disorder
average of the di↵erence of Ŝz

i between an eigenstate |ni
and the adjacent eigenstate |n + 1i. This quantity is
a measure for the variance of the distribution of eigen-
state expectation values of Ŝz

i over eigenstates within the
microcanonical energy window around the target energy
and over disorder realizations. It is obvious that the dif-
ference of local operators in adjacent eigenstates has to
vanish if the quantity is to become a smooth function
of energy in the thermodynamic limit. In Fig. 2, we
show the disorder averaged di↵erence of local magneti-
zations of adjacent eigenstates as a function of disorder
strength for di↵erent system sizes. The signature of ETH
is very clear as at weak disorder strength these di↵er-
ences scale to zero with increasing system size, whereas
the breakdown of ETH in the MBL phase is signalled by
a constant average di↵erence for all system sizes. The
position of the critical point that can be estimated from
the point at which the ETH is no longer valid depends on
the energy density and is fully consistent with a mobility
edge12,24,25.
Previously, it has been established that the variance of

eigenstate to eigenstate fluctuations of local operators in
generic ETH systems decreases exponentially with sys-
tem size as the square root6,9 of the dimension of the
Hilbert space dim(H). We verify this exponential law
in Fig. 3 by plotting the average di↵erence of adja-
cent eigenstate magnetizations |�m| = |hn |Sz

i |ni� hn+
1 |Sz

i |n+1i| as a function of the dimension of the Hilbert
space dim(H) on a log-log scale. Our results are approx-
imately linear and the corresponding exponent can be

Difference of local 
magnetization between 
consecutive eigenstates
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Figure 2. Adjacent gap ratio (top) and Kullback Leibler di-
vergence (bottom) as a function of disorder strength in the
spectrum center ✏ = 0.5. Insets: (top) data collapse used to
extract the critical disorder strength hc and exponent ⌫. The
h axis is transformed by (h� hc)L

1/⌫ , (bottom) distribution
of KLd in both phases.

least 50 eigenpairs with energy densities closest to the
targets ✏ = {0.05, 0.1, . . . 0.95}. Note that this is a much
more demanding computational task than for the Ander-
son problem, as the number of o↵-diagonal elements of H
scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [51] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse

is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase
(at h = 1) around the GOE mean value of 2 with a vari-
ance decreasing with L provides strong evidence that the
statistical behavior of the eigenstates is well described
by GOE, extending its applicability beyond simple level
statistics. In the MBL regime (h = 4.8), the behavior is
completely di↵erent as variance and mean both increase
with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law SE/L !
constant for h < hc to area-law with SE/L ! 0 for
h > hc. Assuming a volume law scaling at the criti-
cal point [58], we perform a collapse of SE/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [32], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]

Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [57]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.

ETH MBL
Gap ratio (avoids unfolding)

gn = |En � En�1|
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= ln (IPR)

Localization of a wave-function in a basis

Participation entropies

pi = |hn|ii|2 {|ii} = {Sz} basis|ni =
X

i

ni|ii
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1 = �

X
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Figure 4. Bipartite fluctuations of half-chain magnetization as
a function of disorder strength at ✏ = 0.3. Inset: data collapse
using the best estimates for the critical disorder strength hc =
3.09(7) and ⌫ = 0.77(4).

(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE/L) works particu-
larly well (top panel of Fig. 3).

Perhaps more accessible to experiments, bipartite fluc-
tuations F of subsystem magnetization (taken here to be
a half-chain L/2) have a similar behavior. Being sim-
ply the Curie constant of the subsystem, we also ex-
pect thermal extensivity (subextensive response) in the
ergodic (localized) regime. This is clearly checked in
Fig. 4 for ✏ = 0.3 where F/L has a crossing point at the
disorder-induced MBL transition. A data collapse (inset
of Fig. 4) is also possible for F/L = g[L1/⌫(h � hc)]),
giving hc = 3.09(7) and ⌫ = 0.77(4), consistent with es-
timates from other quantities (Fig. 1). Finally, we also
performed an analysis of the dynamic fraction f of an
initial spin polarization [28], and obtained similar consis-
tent scaling (see Supp. Mat. and Fig. 1).

The disordered many-body system can be mapped
onto a single particle problem on the complex graph
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Figure 5. Participation entropy as a function of SP
0 =

ln(dimH) for q = 1, 2 and ✏ = 0.4. In the ergodic phase
(h = 1.8), SP

q grows linearly with SP
0 while the linear scaling

term vanishes within our error bars in the localized regime
(h = 4.8). Our fits (solid lines, see text) constrain aq 2 [0, 1]
and yield a logarithmic scaling prefactor lq ⇡ 2(1) at h = 4.8,
consistent with a (slow) growth of SP

q with system size in the
localized phase.

spanned by the Hilbert space whose dimH vertices are
the basis states, which are connected by spin-flip terms
in Eq. (1). The average coordinance of each node is
z ⇠ L and the random potential has a gaussian distri-
bution of variance �h ⇠ h

p
L, meaning that the e↵ective

connectivity grows faster than the disorder strength. Us-
ing recent results on Anderson localization on Bethe lat-
tices at large connectivity [59], we do not expect genuine
Hilbert space localization at any finite disorder. This
argument is corroborated by our numerical results for
the PE SP

q (Fig. 5) which are always found to increase
with SP

0 ⌘ ln(dimH), albeit much more slowly in the
localized regime. Analysis of various fits of the form
SP

q = aqS
P
0 + lq ln(SP

0 ) + o(SP
0 ) indicate that aq ' 1

8q in the ergodic regime (with possibly small negative lq
corrections) as seen in the color scale of Fig. 1, in con-
trast to Anderson localization on the Bethe lattice [60].
In the localized regime, we obtain essentially similar fit
qualities with aq ⌧ 1 (see typical numbers in Fig. 5),
or aq = 0 and lq > 0 (the slow growth of SP

q and our
limited system sizes do not allow to separate these two
possibilities).
Discussions and conclusions— Using various estimates

for the MBL transition, our large-scale energy-resolved
ED results indicate the existence of an extensive many-
body mobility edge in the excitation spectrum (Fig. 1)
of the random field Heisenberg chain. Furthermore, we
show that the ergodic regime has full features of a metal-
lic phase (with aq = 1 and GOE statistics for both en-
ergy levels and the wavefunction coe�cients), and that
the localized many-body states do not exhibit a true
Hilbert-space localization for configuration spaces up to
dimH ⇠ 7·105[61]. Our detailed finite-size scaling analy-
sis (Sup. Mat.) provides a consistent estimate of a char-
acteristic length diverging as |h � hc|�⌫ with ⌫ = 0.8(3)
through the full phase diagram. This estimate of the ex-
ponent ⌫ appears to violate the Harris-Chayes [62, 63]
criterion ⌫ � 2/d (see also Ref. [32]) within the system
sizes used. This is quite intriguing given that for the
same size range, the location of the critical point is con-
sistent for all various estimates used (see Fig. 1). This
opens new questions on the finite-size scaling and/or cor-
rections to scaling at the MBL transition which may not
follow [27, 28] standard forms.
Besides these results for the particular model Eq. 1, we

believe that the numerical techniques (massively paral-
lel energy-resolved diagonalisation) and new indicators of
the ergodic-localized transition (eigenstates correlations
or bipartite fluctuations) introduced here will be useful
in a large number of contexts related to MBL or ETH. In
particular, the obtention of exact eigenvectors on fairly
large systems will be crucial to quantify the e↵ectiveness
of encoding localized states as matrix product states, as
recently advocated [64–66].
Acknowledgments — We thank G. Lemarié, F. Poll-
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ETH : Entanglement entropy of eigenstates is extensive : Volume law

System is its own bath: B acts a thermal bath for A

A

B

NA
⇢A = TrB⇢ = ⇢eqA (Tn)

SA = �TrA⇢A log ⇢A / NA Tn 6= 0if

Volume Law for entanglement Area law for entanglement

ETH states versus MBL states

Random matrix statistics

Ergodic states
Follow ETH

Eigenstates occupy all configuration space No delocalization 
Integrable (Poisson) statistics

Violate stat. mech.
MBL states

Observables are the same 
within the same energy shell

Observables differ from 
eigenstate to eigenstate

MBL : states have low entanglement                          : Area lawSA/NA ! 0

Eisert et al. 

Abanin, Vidal et al. 
NB2: MBL states efficiently represented as matrix-product states Pekker, Clark

NB1 : Same entanglement structure as ground-states
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Figure 2. Adjacent gap ratio (top) and Kullback Leibler di-
vergence (bottom) as a function of disorder strength in the
spectrum center ✏ = 0.5. Insets: (top) data collapse used to
extract the critical disorder strength hc and exponent ⌫. The
h axis is transformed by (h� hc)L

1/⌫ , (bottom) distribution
of KLd in both phases.

scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law SE/L !
constant for h < hc to area-law with SE/L ! 0 for
h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be

12 16 20 24
L
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/
L

Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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Figure2.Adjacentgapratio(top)andKullbackLeiblerdi-
vergence(bottom)asafunctionofdisorderstrengthinthe
spectrumcenter✏=0.5.Insets:(top)datacollapseusedto
extractthecriticaldisorderstrengthhcandexponent⌫.The
haxisistransformedby(h�hc)L

1/⌫
,(bottom)distribution

ofKLdinbothphases.

scaleswithL.Weuseatleast1000disorderrealizations
foreachL(exceptforL=22whereweaccumulatedbe-
tween50and250samples).Foreach✏,observablesare
calculatedfromthecorrespondingeigenvectorsandav-
eragedovertargetpacketsanddisorderrealizationsfor
eachvalueofthedisorderstrengthh.Aseigenvectorsof
thesamedisorderrealizationarecorrelated,wefoundit
crucial[50]tobinquantitiesoveralleigenstatesofthe
samerealization,andthencomputethestandarderror
overthesebinaverages,inordernottounderestimate
errorbars.Investigatingnumerousquantitiesallowsto
checktheconsistencyofouranalysisandconclusions.

Resultsandfinitesizescalinganalysis—Wediscussthe
transitionbetweenGOEandPoissonstatistics,firstus-
ingtheconsecutivegapratior,showninFig.2(top)
for✏=0.5.Whenvaryingthedisorderstrengthh,we
clearlyseeacrossingaroundhc⇠3.7betweenthetwo
limitingvalues.Thiscrossingcanbeanalyzedusinga
scalingformg[L

1/⌫(h�hc)]whichallowsacollapseof
thedataontoasingleuniversalcurve(seeinset),yield-
inghc=3.72(6)and⌫=0.91(7)(seedetailsoffitting
procedureanderrorbarsestimatesinSup.Mat.).

TheabovedefinedKLd,computedfortwoeigenstates
randomlychosenatthesameenergytarget✏andav-
eragedoverdisorderedsamples,alsodisplaysacross-
ingbetweenthetwolimitscalingsKLGOE=2and
KLPoisson⇠ln(dimH)(Fig.2bottom).Adatacollapse
isverydi�culttoachieveforKLduetoalargedrift
ofthecrossingpoints.Nevertheless,thedistributionsof
KLplottedininsets,displaymarkedlydi↵erentfeatures.
Theperfectgaussiandistributionintheergodicphase(at

h=1)aroundtheGOEmeanvalueof2withavariance
decreasingwithLprovidesstrongevidencethatthesta-
tisticalbehavioroftheeigenstatesiswelldescribedby
GOE,extendingitsapplicabilitytopurelevelstatistics.
IntheMBLregime(h=4.8),thebehavioriscompletely
di↵erentasvarianceandmeanbothincreasewithL.
Wenowturntotheentanglemententropyforareal

spacebipartitionatL/2(Leven).Shownfortwotargets
✏=0.5and0.8,thetransitionissignaled(Fig.3)by
achangeintheEEscalingsfromvolumelawS

E
/L!

constantforh<hctoarea-lawwithS
E
/L!0for

h>hc.Assumingavolumelawscalingatthecriti-
calpoint[57],weperformacollapseofS

E
/Ltotheform

g[L
1/⌫(h�hc)](Fig.3bottompanel)givingestimatesfor

thecriticaldisorderhcandexponent⌫consistentwith
otherresults(seeSup.Mat.).Furthermore,asrecently
argued[31],thestandarddeviationoftheentanglement
entropydisplaysamaximumattheMBLtransition.A
scalingcollapseoftheform�E=(L�c)g[L

1/⌫(h�hc)]
(withcanunknownparameterandthepreviousesti-
matesof⌫andhcfromcollapseofS

E
/L)worksparticu-

larlywell(toppanelofFig.3).
Perhapsmoreaccessibletoexperiments,bipartitefluc-

tuationsFofsubsystemmagnetization(takenheretobe

Figure3.EntanglemententropypersiteS
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S
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Figure 2. Adjacent gap ratio (top) and Kullback Leibler di-
vergence (bottom) as a function of disorder strength in the
spectrum center ✏ = 0.5. Insets: (top) data collapse used to
extract the critical disorder strength hc and exponent ⌫. The
h axis is transformed by (h� hc)L

1/⌫ , (bottom) distribution
of KLd in both phases.

scales with L. We use at least 1000 disorder realizations
for each L (except for L = 22 where we accumulated be-
tween 50 and 250 samples). For each ✏, observables are
calculated from the corresponding eigenvectors and av-
eraged over target packets and disorder realizations for
each value of the disorder strength h. As eigenvectors of
the same disorder realization are correlated, we found it
crucial [50] to bin quantities over all eigenstates of the
same realization, and then compute the standard error
over these bin averages, in order not to underestimate
error bars. Investigating numerous quantities allows to
check the consistency of our analysis and conclusions.

Results and finite size scaling analysis— We discuss the
transition between GOE and Poisson statistics, first us-
ing the consecutive gap ratio r, shown in Fig. 2 (top)
for ✏ = 0.5. When varying the disorder strength h, we
clearly see a crossing around hc ⇠ 3.7 between the two
limiting values. This crossing can be analyzed using a
scaling form g[L1/⌫(h � hc)] which allows a collapse of
the data onto a single universal curve (see inset), yield-
ing hc = 3.72(6) and ⌫ = 0.91(7) (see details of fitting
procedure and error bars estimates in Sup. Mat.).

The above defined KLd, computed for two eigenstates
randomly chosen at the same energy target ✏ and av-
eraged over disordered samples, also displays a cross-
ing between the two limit scalings KLGOE = 2 and
KLPoisson ⇠ ln(dimH) (Fig. 2 bottom). A data collapse
is very di�cult to achieve for KL due to a large drift
of the crossing points. Nevertheless, the distributions of
KL plotted in insets, display markedly di↵erent features.
The perfect gaussian distribution in the ergodic phase (at

h = 1) around the GOE mean value of 2 with a variance
decreasing with L provides strong evidence that the sta-
tistical behavior of the eigenstates is well described by
GOE, extending its applicability to pure level statistics.
In the MBL regime (h = 4.8), the behavior is completely
di↵erent as variance and mean both increase with L.
We now turn to the entanglement entropy for a real

space bipartition at L/2 (L even). Shown for two targets
✏ = 0.5 and 0.8, the transition is signaled (Fig. 3) by
a change in the EE scalings from volume law SE/L !
constant for h < hc to area-law with SE/L ! 0 for
h > hc. Assuming a volume law scaling at the criti-
cal point [57], we perform a collapse of SE/L to the form
g[L1/⌫(h�hc)] (Fig. 3 bottom panel) giving estimates for
the critical disorder hc and exponent ⌫ consistent with
other results (see Sup. Mat.). Furthermore, as recently
argued [31], the standard deviation of the entanglement
entropy displays a maximum at the MBL transition. A
scaling collapse of the form �E = (L� c)g[L1/⌫(h� hc)]
(with c an unknown parameter and the previous esti-
mates of ⌫ and hc from collapse of SE/L) works particu-
larly well (top panel of Fig. 3).
Perhaps more accessible to experiments, bipartite fluc-

tuations F of subsystem magnetization (taken here to be

0

1

2

3

4

5

Figure 3. Entanglement entropy per site SE/L and its vari-
ance �E , as a function of system size L for di↵erent disorder
strengths in the middle of the spectrum (left) and in the up-
per part (right). The volume law scaling leading to a constant
SE/L for weak disorder contrasts with the area law (signaled
by a decreasing SE/L) at larger disorder is very clear. Black
line: SE/L for a random state [56]. Close to the transition,
the prefactor of the volume law is expected to converge only
for larger system sizes.
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most challenging low-ω regime. Conclusions and implications
are presented in Sec. V.

II. MODEL AND NUMERICAL METHODS

As the MBL prototype model we consider the 1D
anisotropic Heisenberg model with random local fields
[6,10,21,38,39]

H = J
∑

i

[
1
2

(S+
i+1S

−
i + S−

i+1S
+
i ) + "Sz

i+1S
z
i

]
+

∑

i

hiS
z
i .

(2)

Periodic boundary conditions are assumed and J = 1 is used
as the unit of energy. The model (2) is the 1D equivalent to the
t-V model of interacting spinless fermions with random onsite
energies hi , investigated by a number of authors [7–9,12,36].
For hi we take the uniform probability distribution P (|hi | <
W/2) = 1/W , standard in most studies.

As the quantity of interest we choose the high-temperature
(T ≫ J ) dynamical (spin) conductivity σ (ω), expressed as

σ (ω) = T σ̃ (ω) = 1
L

Re
∫ ∞

0
dteiω+t ⟨j (t)j (0)⟩

= π

LNst

∑

n̸=m

|⟨n|j |m⟩|2δ(ω − ϵm + ϵn), (3)

where j = (iJ/2)
∑

i(S
+
i+1S

−
i − S−

i+1S
+
i ) is the (spin) current

operator and Nst is the number of MB states. For calculations
of the sample-averaged σ (ω) and its STS fluctuations we use
two methods based on exact diagonalization (ED). In both of
them we restrict our analysis to the system without a uniform
magnetic field or Sz

tot = 0. The first one is the full ED, allowing
up to Nst ∼ 104 for each of Nd ∼ 100 samples with random hi ,
reaching L ! 16. In the special case " = 0, Eq. (2) transforms
into the (Anderson) model of NI spinless fermions [3–5],
which is solved here by the ED within the single-particle basis
for large systems, typically L ∼ 1.6 × 104.

The majority of the results are obtained via the
microcanonical-Lanczos method (MCLM) [36,39,40], best
suited for dynamical quantities at elevated T > J . Its compu-
tational requirements are essentially equivalent to the ones for
the ground-state Lanczos ED, but with an increased number of
Lanczos steps M , in order to improve the frequency resolution
δω ∼ L/M . We are able to obtain results for L = 28, Nst ∼
4 × 107, and M ∼ 104, with typical δω ∼ 2 × 10−3 > δϵ. δϵ
is the characteristic MB level separation (e.g., δϵ ∼ 10−3 for
L = 16, and δϵ ∼ 10−6 for L = 28). Spectra are broadened
with Gaussians characterized by the frequency width η.
The calculated σ (ω) has a macroscopic meaning providing
η > δϵ, while for smaller η results involve finite-size and
level-statistics effects. E.g., for ω " δϵ, any level repulsion
necessarily affects frequency dependencies of σ (ω) and STS
fluctuations.

III. GENERAL FEATURES AND FLUCTUATIONS OF
THE SPECTRA

Before discussing more delicate issues, we present in Fig. 1
gross results of sample-averaged σ (ω) for the NI (" = 0) and

0

0.03

0.5 1 1.5
ω

0

0.03

σ(
ω

)

W=2
W=4
W=6
W=8

NI(a)

(b)

FIG. 1. Large-T dynamical conductivity σ (ω) for disorders W =
2–8 for two cases: (a) " = 0 (Anderson) model evaluated on a chain
with L = 16 000 sites and (b) interacting " = 1 case, calculated for
L = 28 using MCLM (η = 0.003).

the interacting " = 1 case, respectively, for various disorders
W = 2 − 8, with η ∼ 4 × 10−3. For large W we note that
the general features are very similar in both cases [6,36,38],
e.g., the locations of the maxima are at ω ∼ 1. Essential
differences occur for low ω ≪ 1. While for " = 0 there is
a clear drop towards σ0 = 0 for all W , for " = 1 we find a
rather broad regime in which σ (ω) follows the low-ω behavior
in Eq. (1), with σ0 > 0 and α ∼ 1 [36,39]. This behavior will
be elaborated further on.

In order to estimate the possible influence of finite-size
effects, we present in Fig. 2 the direct comparison of the
results for σ (ω) for fixed " = 1 but various W = 2,4,6, as
obtained for different sizes L = 16–28. Here, for L = 16 we
use the ED, while for larger L = 20–28 we use the MCLM.
It is rather obvious that deviations are hardly visible (taking

18.02.00
ω

0

0.02

0.04

0.06
σ(

ω
)

L = 16
L = 20
L = 24
L = 28

W = 2

W = 4

W = 6

FIG. 2. σ (ω) compared for different system sizes L and three
values of W at fixed " = 1. L = 16 system is calculated via the ED,
whereas for L = 20,24,28 we employ MCLM.
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‘Metal’ Not Anderson insulator either!

MBL phase

Transport

Entanglement spreads fast Entanglement spreads, but slowly

No transport

No memory of initial state Memory, Revivals

Quench from an initial product state : follow entanglement growth S(t) = �Tr⇢(t) ln ⇢(t)

ETH : Ballistic growth

FIG. 1. (a) Intuitive picture for t linear entanglement growth in clean systems. Quasi-particles

prepared in a localized initial state propagate as a superposition of a right and left moving particle,

thus generating entanglement when the light-cone crosses the subsystem boundary. (b) Entangle-

ment growth in a many-body localized system showing delayed logarithmic growth. Inset shows

scaled plots with time measured in units of 1/J
z

, indicating that the delay is set by the interaction

scale. (c) Saturated value of the entropy shows area law for the non-interacting system (J
z

= 0),

and volume law for the system with interactions. The inset shows the time evolution up to the sat-

uration value. Panels (b) and (c) are reproduced from Ref. [19], copyright (2012) by The American

Physical Society.

XXZ spin-1/2 chain with a random field:

H = J?
X

i

�
Sx

i

Sx

i+1

+ Sy

i

Sy

i+1

�
+ Jz

X

i

Sz

i

Sz

i+1

+
X

h
i

Sz

i

(4)

This Hamiltonian (10) can be mapped, using a Jordan-Wigner transformation, to an in-
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MBL: Logarithmic spread
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Figure 1. Disorder averaged time evolution of the entangle-
ment entropy S(t) [panels a) and b)] for the half-system in
an open chain and spin density imbalance I(t) [panels c) and
d)], all measured after a quench from a random initial product
(unentangled) state having an average energy in the middle
of the spectrum. Left panels show the behavior in the er-
godic ETH phase, where the entanglement entropy grows as
a powerlaw / t1/z until saturation and the imbalance de-
cays algebraically / t�⇣ at intermediate times (ED results
for L = 28 sites). Right panels display the dynamical be-
havior in the MBL phase, where the entanglement entropy
grows logarithmically in time and the imbalance saturates at
a nonzero constant (ED results for L = 20 sites). Here, we
have averaged over 103 disorder configurations.

MBL regime, we recover the slow logarithmic growth of
entanglement, while the memory of initial spin density
imbalance remains even after long times. Fig. 1 shows
an overview of both ETH and MBL regimes for the time
evolution of entanglement and imbalance obtained using
Krylov space time evolution with L = 20 sites in the
MBL regime and L = 28 in the ETH phase where larger
systems are required to capture the slow dynamics.
The power-law regimes with varying exponents can be
observed as straight lines in the log-log panels for the
ETH phase. These exact results (see below for more
details) are obtained for initially unentangled product
states filtered such that their energy is in the middle
of the many-body spectrum where the critical disorder
strength is hc ' 3.7 [18].

Time evolution after a quench— We consider a global
quench protocol, where we follow the time-evolution of
an initial product state | (0)i = |�1, . . . ,�Li given by
the z projections �i under Hamiltonian dynamics

| (t)i = e�iHt| (0)i. (2)

Studying the dynamics at any arbitrary time by

fully diagonalizing H is restricted to small system sizes,
typically L = 16 for Eq. (1). Time evolution using
variational approaches based on matrix-product states
formalism [32, 33] are particularly successful in cases
where the entanglement entropy remains small, e.g. in
the MBL phase, but rapidly break down in the ergodic
phase due to the fast entanglement growth (see below).
In order to address the ETH regime, we take advantage
of the algorithm first proposed in Ref. 29 which is based
on a projection of the Hamiltonian to the Krylov space
K = span (| 0i, H| 0i, . . . Hn| 0i) using the Lanczos
algorithm and calculation of the (small) matrix expo-
nential in the orthonormal Krylov space basis. Here, we
use the implementation of the SLEPc package [34] which
calculates the matrix exponential in the Krylov basis by
a simple eigendecomposition. We are able to reach large
system sizes for any disorder strength (up to L = 28
sites) in the intermediate time regime (up to t ' 102

for the largest systems) before the entanglement entropy
saturates due to finite-system sizes. As we previously
showed [18] that the critical disorder strength hc of the
MBL transition depends on the energy of eigenstates, it
is crucial to specify the energy of the initial state. To this
end, we calculate for all disordered samples the average
energy density ✏ = (h (0) |H| (0)i � E0) / (E1 � E0),
with E0 (E1) the groundstate (maximal) energy of
the sample, for random basis states | (0)i until we
find one whose energy density is close enough to the
desired target density. In the following, we focus
on initial states with total zero magnetization that
are located in the middle of the spectrum (✏ = 0.5).
We average our results over at least 1000 disorder real-
izations, choosing a di↵erent initial state for each sample.

Sub-ballistic entanglement growth— We first discuss the
time evolution of the entanglement entropy

S(t) = �Tr
h
⇢A(t) ln ⇢A(t)

i
, (3)

where ⇢A(t) = TrB | (t)ih (t)| is the (time-dependent)
reduced density matrix obtained after cutting chains of
lengths L = 20, 24, 28 in two equal parts A and B of
size L/2. For clean systems, the growth of entanglement
entropy after such a global quench is known to be bal-
listic in time [7, 35, 36], the information spreading being
limited by a Lieb-Robinson bound [37]. Then, after a
finite time, the entropy will reach its saturation value
Ssat = `s1 for a finite subsystem of length ` [38], with
s1 ' ln 2 depending on the energy of the initial state
(here s1 ' ln 2 for our initial states with ✏ = 0.5).

In practice, the time lapse for observing an asymptotic
ballistic regime is restricted to t < tsat ' s1`, which
may prevent such an observation in particular for small
system sizes. Interestingly, using open chains the entan-
glement entropy grows a factor of 2 slower as compared
to the periodic case, while saturating at the same value

Anderson :
bounded



2

e±i4Jijt, where + (�) is taken when the spins on i- and j-
site are parallel (anti-parallel). Averaging over |ni leads
to

F (t) = cos (4Jijt) . (4)

Further averaging over all random configurations results
in

F (t) =
sin(4J exp(�|i� j|/⇠)t)

4J exp(�|i� j|/⇠)t . (5)

Before proceeding, we would like to make a few com-
ments on the result Eq. 5. (i) Eq. 5 can be expanded
as 1 + ↵t2 for the early-time behavior. The absence of
linear t term means that at early time the OTOC de-
cays in power law instead of exponentially. This shows
the di↵erence in the OTOC between an MBL state and
a thermalized state. When the distribution function of
J̃ij changes or higher order terms in the Hamiltonian Eq.
2 are included, this power law behavior is quite robust
while ↵ is a non-universal value and will change corre-
spondingly. (ii) J = 0 describes the AL limit where F (t)
becomes a constant. This shows that the OTOC can also
distinguish the MBL phase from the AL phase. (iii) The
typical time scale of the decay time is given by

t0 =
⇡

4J
e|i�j|/⇠, (6)

which increases exponentially as the the distance between
i- and j-sites increases.

OTOC in a Random-field XXZ Model. We now come
to a more microscopic model for MBL, that is the XXZ
model in a random magnetic field [17, 18]

Ĥ =
X

i

J?(ŝ
x
i ŝ

x
i+1 + ŝyi ŝ

y
i+1) + Jz ŝ

z
i ŝ

z
i+1 + hiŝ

z
i . (7)

Here J? and Jz are both constants, and hi are random
fields uniformly distributed among [�h, h]. In this model
Jz represents the interaction e↵ect.

In Fig. 1 we show the entanglement von Neumann en-
tropy, the second Rényi entropy and the OTOC for both
the MBL case and the AL case. For the EE calculation,
the system is divided into two parts A and B, where A
(B) is the left (right) half of this eight-site system. The
second Rényi EE is defined as S2

A = � log TrA⇢̂2A and
⇢A = TrB⇢. The initial state is prepared in a Néel state
along ẑ direction, and evolves from there under the XXZ
Hamiltonian Eq. 7. This initial state preparation can in
fact be viewed as a global quench. For the OTOC cal-
culation, we choose Ŵ as ŝx at site i = 2 and V̂ as ŝx
at site i = 8. The temperature is also set at infinity and
we sum over all configurations with equal weight. We
do check other choices of operators and the OTOCs all
behave similarly.

From Fig. 1 one can see that, after a linear increase at
the initial time (0 < t . 1/J?), both two EEs saturate

FIG. 1: The calculation of the von Neumann EE, the second
Rényi EE and the OTOC for the MBL and the AL cases in
random-field XXZ model Eq. 7. The horizontal axis is tJ? in
the logarithmic scale. The calculation is done for on a 8-site
model with open boundary condition, and is averaged over
1000 random configurations. Here J? > 0, h

i

/J? is uniformly
distributed between [�5, 5]. For the MBL case J

z

/J? = 0.2
where the system has been shown to be fully localized [19].
For the AL case J

z

= 0.

for the AL case, while they continuously grow logarithmi-
cally for the MBL case. The von Neumann EE and the
second Rényi EE behave similarly. For the MBL case,
at the time scale that EE starts logarithmic growth, the
OTOC also starts to decay. While in the AL case, the
OTOC always remains a constant. We also calculate the
normal correlators in this model and find they always re-
main as constants in both the MBL phase and the AL
phase. These are consistent with the results from the
phenomenological model.
OTOC-EE Theorem. Motivated by the calculation

above, here we prove a general theorem as
Theorem. For a system at T = 1 quenched by an ar-

bitrary operator Ô at t = 0, dividing the system into two
subparts A and B and considering the second entangle-
ment Rényi entropy S2

A, the growth of this second Rényi
EE is related to the OTOC of the original equilibrium
state via

exp(�S(2)
A ) =

X

M̂2B

hM̂(t)V̂ (0)M̂(t)V̂ (0)i�=0 (8)

where V̂ = ÔÔ† and the summation is taken over a
complete set of operators M̂ in the part B. Here we
have chosen the normalization condition for M̂ and Ô
as

P
M̂2B MijMlm = �im�lj , Tr[ÔÔ†] = 1.

Before the proof of this theorem, we would like to add
a few remarks on this theorem:

i) This theorem applies to generic quantum systems, no
matter whether they are chaotic, thermalized, localized
or not. It is independent of how to divide the system into
A and B subparts, and is also independent of whether the
quench operator Ô is a global one or a local one.

Out-of-time ordered correlators

Fan et al. 

• OTOC quantifies ‘scrambling’ of quantum information ( ~ probability of attempting to 
recover information via local operations) 



PREVIOUSLY

Thermal phase Single-particle localized Many-body localized

Memory of initial conditions Some memory of local initial Some memory of local initial

‘hidden’ in global operators conditions preserved in local conditions preserved in local

at long times observables at long times observables at long times.

ETH true ETH false ETH false

May have non-zero DC conductivity Zero DC conductivity Zero DC conductivity

Continuous local spectrum Discrete local spectrum Discrete local spectrum

Eigenstates with Eigenstates with Eigenstates with

volume-law entanglement area-law entanglement area-law entanglement

Power-law spreading of entanglement No spreading of entanglement Logarithmic spreading of entanglement

from non-entangled initial condition from non-entangled initial condition

Dephasing and dissipation No dephasing, no dissipation Dephasing but no dissipation

TABLE I: A list of some properties of the many-body-localized phase, contrasted with properties

of the thermal and the single-particle-localized phases. The spreading of entanglement is discussed

further in Sec.IV-C. Local spectra are discussed further in Sec.IV-D.

fermions in a random potential. An analogous argument can be constructed for objects

with more than two states, but we stick to this two-state example for specificity. Let us

further assume that the p-bits are governed by a Hamiltonian with quenched disorder and

strictly short-range interactions. For strong enough disorder, such a Hamiltonian can be

in the fully many-body localized (FMBL) regime, wherein all the many-body eigenstates of

the Hamiltonian are localized. It was argued in [21–24] that in this FMBL regime, one can

define a set of localized two-state degrees of freedom, with Pauli operators {~⌧
i

}, henceforth

called ‘l-bits’ (l=localized) such that the Hamiltonian when written in terms of these new

variables takes the form

H = E0 +
X

i

⌧ z
i

+
X

ij

J
ij

⌧ z
i

⌧ z
j

+
1X

n=1

X

i,j,{k}

K(n)
i{k}j⌧

z

i

⌧ z
k1
...⌧ z

kn
⌧ z
j

, (6)

where the sums are restricted so that each term appears only once, and E0 is some constant

energy o↵set which may be zero and which has no relevance for the closed system’s dynamics.

The typical magnitudes of the interactions J
ij

and K(n)
i{k}j fall o↵ exponentially with distance,

as do their probabilities of being large.
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MBL ~ integrable system

Explicit construction of local conserved operators in disordered many-body systems

T. E. O’Brien,1 Dmitry A. Abanin,2 Guifre Vidal,3 and Z. Papić4
1Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

2Department of Theoretical Physics, University of Geneva,
24 quai Ernest-Ansermet, 1211 Geneva, Switzerland

3Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada and
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The presence and character of local integrals of motion – quasi-local operators that commute
with the Hamiltonian – encode valuable information about the dynamics of a quantum system.
In particular, strongly disordered many-body systems can generically avoid thermalisation when
there are extensively many such operators. In this work, we explicitly construct local conserved
operators in 1D spin chains by directly minimising their commutator with the Hamiltonian. We
demonstrate the existence of an extensively large set of local integrals of motion in the many-body
localised phase of the disordered XXZ spin chain. These operators are shown to have exponentially
decaying tails, in contrast to the ergodic phase where the decay is (at best) polynomial in the size
of the subsystem. We study the algebraic properties of localised operators, and confirm that in the
many-body localised phase they are well-described by “dressed” spin operators.

I. INTRODUCTION

Isolated quantum systems (i.e., those disconnected
from any thermal bath) evolve according to unitary evo-
lution. Recently there has been much interest in under-
standing and classifying the possible outcomes of such
evolution for generic systems, e.g., those containing many
particles, subject to local potentials and interactions, and
in the presence of quenched disorder degrees of freedom.
For simplicity, we consider systems defined on a lattice,
and therefore with a local Hilbert space of finite dimen-
sion (e.g., two in the case of spin-1/2 qubits). The total
Hilbert space, being a tensor product of local Hilbert
spaces, is exponentially large in lattice size L, which
makes the problem still very di�cult to treat in general.

One possible outcome that is relatively well understood
is ergodic evolution: a system, prepared in an arbitrary
initial state, evolves towards local thermal equilibrium
at long times. This process is a result of the “eigenstate
thermalisation hypothesis” (ETH), which governs the un-
derlying structure of individual (many-body) eigenvec-
tors of ergodic systems1–3. More recently, there has been
a surge of activity focused on understanding a distinct
class of systems which undergo non-ergodic dynamics. A
well-known example of such systems is the Anderson in-
sulator4. Anderson localisation is a generic property of
low-dimensional systems which is not sensitive to a par-
ticular type of lattice or disorder, but only applies to
non-interacting systems. When interactions are compa-
rable in strength to hopping and disorder energy scales,
the system may exhibit many-body localisation, a type of
localisation in the many-body Hilbert space5–7.

The interest in many-body localised (MBL) systems
is partly fundamental, as they provide a new paradigm
for non-ergodic systems that violate the basic premise of
equilibrium statistical mechanics. On the other hand,
MBL systems have measurable properties that distin-
guish them from both Anderson insulators and ergodic
systems. For example, their dynamics is governed by slow

FIG. 1: (Color online) A typical integral of motion ⌧i in the
many-body localised phase of the disordered XXZ model. ⌧i
decays exponentially away from the central site i. The oper-
ator ⌧i is determined using the method described in Sec. IV,
and its spatial profile is obtained by plotting the disorder-
averaged logarithm of the operator density, Eq. (14). The
system is XXZ spin chain with interaction V = 0.5t and dis-
order � = 5t in Eq. (5).

dephasing between di↵erent parts of the system8–11. On
the other hand, it was shown that quantum information
can be recovered in MBL systems using spin-echo tech-
niques12, and there are proposals that exotic types of
order can be stabilised using the MBL mechanism13–16,
which may be applicable to designing quantum informa-
tion processing schemes.

In order to explain the basic phenomenology of MBL
systems, including their failure to thermalise, a pic-
ture of Local Integrals of Motion (LIOMs) has been
put forward17,18. According to this picture, the basic
mechanism of MBL is similar to integrable models19:
there emerges an extensive number of operators (“con-
served charges”) ⌧i, which commute amongst themselves

[⌧i, ⌧j ] = 0 as well as with the Hamiltonian,
h
Ĥ, ⌧i

i
= 0.
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• Existence of l-bits now often seen as the definition of MBL

• Almost all features of MBL can be tested / understood in the l-bits language

• Various way of constructing l-bits: perturbation, time-averaged observables, real-space RG …

Imbrie, Ros, Scardicchio



Dynamics & Difference with Anderson localization
• Anderson localized and MBL phases share similar features : no transport, integrable (Poisson) 

statistics, area law entanglement …

• Difference is dephasing: can be traced back to the exponential decaying interactions and tails

• Dynamics of l-bits in MBL phase: precession around z axis (     conserved) with a rate due to 
interactions with other l-bits.

⌧z

• Explains differences between Anderson & MBL : log growth of  entanglement, more complex 
Out-of-Time-Order Correlations …

• For generic initial unentangled states : off-diagonal elements of reduced density matrix decay 
as a power law with time : dephasing Serbyn et al. 

• No « spin-flip » term        in the l-bits Hamiltonian: « no dissipation »

• Helps designing spin-echo protocols to detect / manipulate MBL
Serbyn et al. 



Experiments

SEASON 3



 Experiments : Fermions in 1d Schreiber et al., Science (2015)
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• Cold-atomic gas realization of interacting Aubry-André model:

X⇣ ⌘

+�

X

i,�

cos(2⇡�i+ �)ĉ†i,� ĉi,� + U
X

i

n̂i,"n̂i,#.ˆH =� J
X

i,�

⇣
ĉ†i,� ĉi+1,� + h.c.

⌘

X

• (Non-)Equilibration of a quenched initial state measured by imbalance I =

Ne �No

Ne +No
,

�/J
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FIG. 2: Emergence of a Many-Body Localized State. (a) shows the time-evolved single-site magnetizations h�z

i

i (di↵erent
colors represent di↵erent ions) for the Hamiltonian in Eq. (1) and with B = 4J

max

with no applied disorder (D
i

= 0). The
initial-state reduced density matrices for ions 1 and 10 show the spins start in a product state along the z direction. The
time-averaged reduced density matrices for J

max

t > 5 agree with the values predicted by the ETH, implying the system
has thermalized locally. (b-e) As the disorder strength increases the spins retain more information about their initial state,
indicating a transition towards MBL. (f) shows the dynamics of h�z

i

i for the strongest applied disorder, W = 8J
max

. The initial
and steady-state time-averaged reduced density matrices for ions 1 and 10 now show that information is preserved about the
initial spin configuration at the end of the evolution. Statistical error bars (1 s.d.) are smaller than the data points.

di↵erent disorder strengths. The frozen moments of the
spins increase with increasing disorder as the emergent
integrals of motion become more strongly localized [10].

With the maximum applied disorder, W = 8Jmax,
we measure the single-spin reduced density matrix for
the initial state and the averaged matrix for Jmaxt � 5.
In this case, localization of the spins leads to a marked
di↵erence in the measured and thermal reduced density
matrices, indicating memory of the system’s initial con-
ditions and a breakdown of ETH.

To quantify the localization, we measure the normal-
ized Hamming distance (HD) [23]:

D(t) =
1

2
� 1

2N

X

i

h 0|�z
i (t)�

z
i (0) | 0i (2)

which gives the number of spin flips away from the initial
state, normalized by the length of the chain. At long
times, the HD approaches 0.5 for a thermalizing state
and remains at 0 for a fully localized state. In Fig. 3a,
we measure that the long-time HD is 0.5 in the absence
of disorder, and becomes smaller as the disorder strength
is increased and the system more strongly localizes.

Figure 3b shows that for finite but weak disorder, the
time-averaged HD for Jmaxt > 5 is unchanged, indicat-
ing no localization. However, once the random field is
su�ciently strong we observe a crossover from a ther-
malizing to a localized state. Once in this regime, the

system becomes more localized with increasing disorder
strength.
There is great theoretical interest in mapping the MBL

phase diagram with respect to interaction range and dis-
order strength [12, 23, 24]. We have taken the first steps
towards this goal by measuring a change in the time-
averaged HD for W = 8Jmax and Jmaxt > 5 as we ad-
justed the interaction range, 0.95 < ↵ < 1.81 (Fig. 3c).
For shorter-range interactions, the system appears more
localized, since the state approaches a fully-localized An-
derson insulator as ↵! 1.
Although there are predictions of a many-body delocal-

ization transition at ↵ = 1.5 for Hamiltonians similar to
ours, we did not observe this e↵ect as we tuned ↵ across
this boundary. The lack of a sharp transition, along with
the presence of MBL states for ↵ < 1.5, may be due to
finite size e↵ects (Methods). As this system is scaled to
many dozens of spins, it will allow better study of the
phase transition and mapping of the phase boundary in
a regime where numerics are intractable.
A hallmark of MBL is the characteristic growth of en-

tanglement under coherent time evolution [11], though its
experimental observation has been elusive so far. In An-
derson insulators without many-body interactions, the
entanglement production from weakly entangled initial
states shows a quick saturation after a sharp transient
regime. However, in MBL systems a long-time growth
sets in, which is logarithmically slow for short-range in-

2

FIG. 1: An Interacting spin model with random disor-
der (a) Directly measured elements of the spin-spin coupling
matrix J

ij

(Eq. (1)). The long range interactions decay as
J
max

/r1.13. (b) A specific instance of the random disordered
field with a schematic illustration of the long-range interac-
tions and (c) the random values of the disordered field for all
30 instances of disorder for several di↵erent disorder strengths
and for each ion. (d) The level statistics calculated from the
measured spin-spin coupling matrix (a) and applied disorders
(c) are Poisson-distributed (black line is the expected level
spacings for a Poisson distribution), as predicted for a MBL
system.

between 0.95 and 1.81, although for most of the data
↵ ⇡ 1.13. Moreover, we directly measure the complete
spin-spin coupling matrix (Fig. 1a), demonstrating the
long-range interactions required to exhibit MBL.

The site-specific programmable disorder term Di is
sampled from a uniform random distribution with Di 2
[�W,W ]. The disorder is generated by site-dependent
laser-induced Stark shifts (Methods), which also allow
for preparation of the system into any desired product
state. To ensure we observe the general behavior of the
disordered Hamiltonian, we average over 30 distinct ran-
dom instances of disorder (Fig. 1b-c), which leads to a
sampling error that is smaller than the features of interest
in the data.

An important signature of the MBL phase is mani-
fested in the spectral statistics of adjacent energy levels
of the Hamiltonian. In a thermalizing phase, these en-
ergy splittings follow random-matrix level statistics due
to level repulsion. However, in the MBL phase, this
level repulsion is greatly suppressed since eigenstates typ-
ically di↵er by multiple spins flips. As a result, the level
spacing between adjacent energy eigenvalues are Poisson-
distributed [8, 9]. Using our directly measured spin-spin
couplings and applied realizations for the strongest ex-

perimental disorder W = 8Jmax and B = 4Jmax, we cal-
culate the distribution of adjacent energy level splittings
and find them to be Poisson-distributed, as expected for
a MBL state (Fig. 1d).
Before searching for evidence of localization in the sys-

tem’s time evolution, we first find parameters that cause
the measured state to thermalize in the absence of disor-
der. We increase the transverse field B and look for con-
ditions that result in the single-site magnetization along
two orthogonal directions approaching and remaining at
their thermal equilibrium values (Methods).
Figure 2a shows the measured dynamics of h�z

i i for
B = 4Jmax and Di = 0 with the spins initialized in the
Néel ordered state, |"#"#"#"#"#iz along the z-direction.
This configuration has an energy equivalent to an infinite
temperature thermal state, since the expectation value of
the Hamiltonian is zero. At long times, each expectation
value �z

i approaches zero, losing memory of the initial or-
dering. As the transverse field B is increased, the system
appears to thermalize more quickly and the level statis-
tics approach those of random matrices rather than Pois-
sonians, as expected for a generic thermodynamic system
(Methods).
When B � J , the Hamiltonian is e↵ectively an XY

model [18, 19] and conserves
P

i �
z
i , because Ising pro-

cesses that flip spins along the large field are energetically
forbidden. Thus, being in a spin configuration with half
of the spins up and half of the spins down maximizes the
accessible energy states. In addition, the Neél state is
never an eigenstate, even for B � J and W � J , since
the uniform B field at each site still allows spin exchange
in the z -basis.
If a system is thermal, the Eigenstate Thermalization

Hypothesis (ETH) provides a general framework where
observables reach the value predicted by the microcanon-
ical ensemble [20–22]. This allows us to calculate the
expected thermal value of the reduced density matrix
given the Hamiltonian and an initial state (Methods).
To further establish that the system is thermalizing,
we measure the reduced density matrix for each spin,
⇢i =Tr{j 6=i}⇢, without applied disorder and B = 4Jmax

as shown in Fig. 2a. In our experiment, the spins are
initially prepared in a product state with high fidelity.
However at long times, the measured reduced density
matrices show that each of the spins are very close to
the zero magnetization mixed state, implying the system
has locally thermalized.
We apply the random disordered potential, Di 6= 0,

and observe the emergence of MBL as we increase the
strength of disorder. Since the many-body eigenstates
in the MBL phase are not thermal, transport of energy
and spins is suppressed, and ETH fails. Thus, observ-
ables will not relax to their thermal values [9] and there
will be memory of the initial conditions evident in the
single-site magnetization. When starting in the Neél or-
dered state, Fig. 2b-f shows the time evolution of �z

i for

One-dimensional trapped ions Smith et al., Nat. Phys. (2016)

• Effective S=1/2 quantum Ising model for 10 trapped ions with ‘programmable’ interactions

RandomnessLong-range interactions

• For strong disorder, initial magnetization doesn’t decay : MBL

• Reconstructed level spacing 
distribution follows Poisson statistics



 Experiments: Bosons in 2d Choi et al., Science (2016)

• Trapped cold-atomic bosonic gases with optical lattice, 
interactions and random disorder
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(�i + Vi)n̂i.

Here â†i (âj) is the bosonic creation (annihilation) op-
erator, n̂i = â†i âi the local density operator on site i =
(ix, iy) and the first sum includes all neighboring sites. A
harmonic trapping potential Vi = m(!2

xi
2
x+!2

yi
2
y)/2 with

frequencies (!x,!y) = 2⇡ ⇥ (54, 60)Hz in x and y direc-
tion confines the atoms around the trap minimum. The
nearest-neighbor hopping strength at a lattice depth of
12Er is J/h = 24.8Hz corresponding to a tunneling time
of ⌧ = h/2⇡J = 6.4ms, and longer range hopping terms
are neglected as they are exponentially suppressed. The
onsite interaction strength is U = 24.4 J and �i denotes
the onsite disorder potential. For these parameters, in
the absence of disorder, the system’s ground state is in
the Mott insulating phase, however, with strong particle
hole fluctuations [44].

For reference, we first tracked the evolution without
any disorder potential applied. Already from the bare
images shown in Fig. 1b it becomes apparent that the
initially prepared density step is smeared out after a few
tens of tunneling times ⌧ and after longer time no infor-
mation about the initial density step remains. The ob-
served density distribution appears thermal, and neglect-
ing quantum fluctuations at 12Er, that is, assuming de-
coupled sites, we extracted an upper limit of the temper-
ature of T < 0.54(1)U/kB , where kB is the Boltzmann
constant [43]. The corresponding energy per particle of
ET /N = 0.58(1)U agrees with the expectation for a ther-
malized state. Here, the energy density of the initial out-
of-equilibrium state contributes with E0/N = 0.28(3)U ,
determined by the initial thermal energy, the harmonic
trap with frequency !x and the heating during the 2 s
evolution time (EH/N = 0.18(6)U) used in this measure-
ment [41]. On the contrary, repeating the measurement
with strong disorder, traces of the initial state remain
and the system does not relax to a thermal state with
a spatially symmetric density distribution expected for
thermal state (see Fig. 1c).

A direct and model free quantity to identify a non-
thermalized state is the density asymmetry quantified by
a nonzero left (NL) and right (NR) atom number im-
balance I =

NL�NR
NL+NR

, which we analyze, as all other ex-
tracted quantities, in a central region of interest extend-
ing over 5 lattice sites in the y-direction. The zero line
x = 0, separating left and right, is defined by the posi-
tion of the initial density step and was precisely aligned
to the closest lattice site to the trap center resulting
in an offset of up to ±1 lattice sites, corresponding to
I ±0.05. The evolution of the imbalance, see Fig. 2, con-
firms that for all disorder strengths the system reaches a
quasi steady state within approximately 150 ⌧ . For small
disorder strengths we find a vanishing imbalance, while
for large disorder a nonzero imbalance remains even for
long evolution times. We interpret this latter regime as
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FIG. 2. Relaxation dynamics of a density domain
wall. The evolution of the imbalance I shown for five dif-
ferent disorder strengths �/J = 0 (dark green), 3 (medium
green), 4 (light green), 8 (light blue) and 13 (dark blue) dis-
plays a saturation behavior towards a quasi steady state for
all disorder strengths. For low disorders (green curves) the
asymptotic value of the imbalance is vanishing, while a finite
imbalance remains for higher disorder (blue). The solid lines
are fits to the data with I = I0 exp (�t/ts)+I

1

, of which the
decay time ts is plotted versus disorder strength � in the in-
set. Error bars are one standard deviation of the mean in the
main figure and 95% confidence bounds of the fit parameters
in the inset.

the many-body localized phase, where the observed quasi
steady state is clearly non-thermal and transport through
the system is blocked. The relaxation time ts, extracted
by an exponential fit to the data, increases with disorder
strength and interestingly saturates in the non-thermal
regime (see inset of Fig. 2). We now turn to a series
of measurements where we fix the evolution time to ap-
proximately 190 ⌧ , which is well in the quasi steady state
regime but short enough to keep effects due to noise in-
duced coupling to higher energy bands and atom number
loss negligible. On this timescale, we also expect the ef-
fects of low frequency noise on the disordered system to
be small. Considering the measured heating rate in the
non-disordered system as an upper bound for the energy
increase, the energy per particle would change by only
approximately 10% within one relaxation time ts. Small
couplings with the environment might possibly lead to
relaxation of the quasi steady state on timescales much
longer than our experimental time scale [45–48].

The transition from zero to nonzero imbalance I
1

for
large disorder indicates the presence of a thermalizing
phase for low disorder strengths and an apparent tran-
sition to a localized phase at higher disorder. In or-
der to locate a many-body localization transition, we
recorded a series of measurements with fixed evolution
time in the quasi steady state regime and scanned the
disorder around the critical value, see Fig. 3. We find
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Here â†i (âj) is the bosonic creation (annihilation) op-
erator, n̂i = â†i âi the local density operator on site i =
(ix, iy) and the first sum includes all neighboring sites. A
harmonic trapping potential Vi = m(!2

xi
2
x+!2

yi
2
y)/2 with

frequencies (!x,!y) = 2⇡ ⇥ (54, 60)Hz in x and y direc-
tion confines the atoms around the trap minimum. The
nearest-neighbor hopping strength at a lattice depth of
12Er is J/h = 24.8Hz corresponding to a tunneling time
of ⌧ = h/2⇡J = 6.4ms, and longer range hopping terms
are neglected as they are exponentially suppressed. The
onsite interaction strength is U = 24.4 J and �i denotes
the onsite disorder potential. For these parameters, in
the absence of disorder, the system’s ground state is in
the Mott insulating phase, however, with strong particle
hole fluctuations [44].

For reference, we first tracked the evolution without
any disorder potential applied. Already from the bare
images shown in Fig. 1b it becomes apparent that the
initially prepared density step is smeared out after a few
tens of tunneling times ⌧ and after longer time no infor-
mation about the initial density step remains. The ob-
served density distribution appears thermal, and neglect-
ing quantum fluctuations at 12Er, that is, assuming de-
coupled sites, we extracted an upper limit of the temper-
ature of T < 0.54(1)U/kB , where kB is the Boltzmann
constant [43]. The corresponding energy per particle of
ET /N = 0.58(1)U agrees with the expectation for a ther-
malized state. Here, the energy density of the initial out-
of-equilibrium state contributes with E0/N = 0.28(3)U ,
determined by the initial thermal energy, the harmonic
trap with frequency !x and the heating during the 2 s
evolution time (EH/N = 0.18(6)U) used in this measure-
ment [41]. On the contrary, repeating the measurement
with strong disorder, traces of the initial state remain
and the system does not relax to a thermal state with
a spatially symmetric density distribution expected for
thermal state (see Fig. 1c).

A direct and model free quantity to identify a non-
thermalized state is the density asymmetry quantified by
a nonzero left (NL) and right (NR) atom number im-
balance I =

NL�NR
NL+NR

, which we analyze, as all other ex-
tracted quantities, in a central region of interest extend-
ing over 5 lattice sites in the y-direction. The zero line
x = 0, separating left and right, is defined by the posi-
tion of the initial density step and was precisely aligned
to the closest lattice site to the trap center resulting
in an offset of up to ±1 lattice sites, corresponding to
I ±0.05. The evolution of the imbalance, see Fig. 2, con-
firms that for all disorder strengths the system reaches a
quasi steady state within approximately 150 ⌧ . For small
disorder strengths we find a vanishing imbalance, while
for large disorder a nonzero imbalance remains even for
long evolution times. We interpret this latter regime as

1.0

0.8

0.6

0.4

0.2

0.0

3002001000
Time, t 

Im
ba

lan
ce

,

0
3
4
8

13

t s

60
40
20

151050

FIG. 2. Relaxation dynamics of a density domain
wall. The evolution of the imbalance I shown for five dif-
ferent disorder strengths �/J = 0 (dark green), 3 (medium
green), 4 (light green), 8 (light blue) and 13 (dark blue) dis-
plays a saturation behavior towards a quasi steady state for
all disorder strengths. For low disorders (green curves) the
asymptotic value of the imbalance is vanishing, while a finite
imbalance remains for higher disorder (blue). The solid lines
are fits to the data with I = I0 exp (�t/ts)+I

1

, of which the
decay time ts is plotted versus disorder strength � in the in-
set. Error bars are one standard deviation of the mean in the
main figure and 95% confidence bounds of the fit parameters
in the inset.

the many-body localized phase, where the observed quasi
steady state is clearly non-thermal and transport through
the system is blocked. The relaxation time ts, extracted
by an exponential fit to the data, increases with disorder
strength and interestingly saturates in the non-thermal
regime (see inset of Fig. 2). We now turn to a series
of measurements where we fix the evolution time to ap-
proximately 190 ⌧ , which is well in the quasi steady state
regime but short enough to keep effects due to noise in-
duced coupling to higher energy bands and atom number
loss negligible. On this timescale, we also expect the ef-
fects of low frequency noise on the disordered system to
be small. Considering the measured heating rate in the
non-disordered system as an upper bound for the energy
increase, the energy per particle would change by only
approximately 10% within one relaxation time ts. Small
couplings with the environment might possibly lead to
relaxation of the quasi steady state on timescales much
longer than our experimental time scale [45–48].

The transition from zero to nonzero imbalance I
1

for
large disorder indicates the presence of a thermalizing
phase for low disorder strengths and an apparent tran-
sition to a localized phase at higher disorder. In or-
der to locate a many-body localization transition, we
recorded a series of measurements with fixed evolution
time in the quasi steady state regime and scanned the
disorder around the critical value, see Fig. 3. We find
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Superconducting films Ovadia et al., Sc. Rep. (2015) 
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Figure 3: Mapping T dependence of R and �. (a)
ES type mapping of T dependence of R. R (in log scale)
as a function of T�1/2: At B = 12 T (in red), including
ES fit (in dashed black line) and at B = 0.75 T (in
blue). The low B data clearly deviates from the ES
type, indicating that at lower Bs electronic transport in
our system do not follow the ES VRH. (b) Vanishing
conductivity at non-zero T . The variation of � (in log
scale) as a function of T at B=0.75 T. The solid black
line is a fit using Arrhenius form. The dashed black
curve is the fit to Eq.2. For reference we add �(T ) taken
at B=12 T (red triangles) where ES dependence holds
(red curve). In both (a) and (b) the solid lines represent
data acquired by two-terminal measurements, while
data obtained from I-V scans are shown as triangles
connected by dashed lines as guide for the eye. [Inset]
The variation of T ⇤ (left axis) and T0 (right axis) [see
Eq.2] with B. The values were obtained by fitting of
our experimental data described in figure 2 with Eq.2.
The shaded region indicates the B values Bc can take.

• Existence of a finite-temperature transition implies existence of a many-body 
mobility edge (see later)

• Thin films of InO can exhibit a superconducting-insulator quantum phase 
transition induced by a field

• Close to the critical field, at finite temperature, conductivity measurements suggest 
a perfect insulator at non-zero temperature : MBL ?



MBL = Technical challenge

BEHIND THE SCENES



Technicalities

• Theory : full analytical treatment of interactions + disorder impossible at finite energy 
density, even in 1d

• Numerics not easier : exact methods limited to small systems, standard iterative 
methods target extrema of spectrum, not middle! Stochastic methods (Monte Carlo) 
can’t be applied : MBL phase is NOT thermal

• Experiments : bath is always present!

• Extensions of real space renormalization group (RSRG-X) and DMRG (DMRG-X, 
possible because of area law) to target high-energy states

• Race for more isolated experiments with disorder : Cold-atomic systems maybe 
easier to isolate and control than traditional condensed-matter ones

… but it expedited the creation of new methods !

• Improved exact diagonalization schemes (shift-invert) to target middle of spectrum

• Dynamics can be followed using Time-Evolving Block Decimation techniques  
(because of slow growth entanglement) or in a non-equilibrium Lindblad 
framework using Matrix-Product States/Operators

The MBL problem is very difficult to study …



Some new / more stuff

SEASON 4



Thermal, «ergodic»

ETH / MBL Phase transition

h
0 MBL

‘Quantum phase transition’ (?) implying an 
exponential number of states

hc

• Crossover ? Phase transition : first order (?), continuous ?

• If transition, can’t be seen in thermodynamics

• No clean understanding on the nature of the phase transition : Phenomenological RG suggest 
a new infinite disorder fixed point in 1d, with dynamical critical exponent 

• Numerics see a transition, but exponent violate the (applicable?) Harris bound

Luitz et al., Kjall et al.

Potter et al., Vosk et al.



Many-body mobility edge

Many-body localization edge in the random-field Heisenberg chain

David J. Luitz, Nicolas Laflorencie, and Fabien Alet
Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, 31062 Toulouse, France

⇤

(Dated: November 3, 2014)

We present a large scale exact diagonalization study of the one dimensional spin 1/2 Heisenberg
model in a random magnetic field. In order to access properties at varying energy densities across
the entire spectrum for system sizes up to L = 22 spins, we use a spectral transformation which can
be applied in a massively parallel fashion. Our results allow for an energy-resolved interpretation
of the many body localization transition including the existence of a many-body mobility edge.
The ergodic phase is well characterized by Gaussian orthogonal ensemble statistics, volume-law
entanglement, and a full delocalization in the Hilbert space. Conversely, the localized (non-ergodic)
regime displays Poisson statistics, area-law entanglement and signs of multifractality in the Hilbert
space where a true localization never occurs. We perform finite size scaling to extract the critical
edge and exponent of the localization length divergence.

The interplay of disorder and interactions in quan-
tum systems can lead to several intriguing phenomena,
amongst which the so-called many-body localization has
attracted a huge interest in recent years. Following pre-
cursors works [1–4], Basko and co-workers have estab-
lished [5] within a perturbative approach that the cele-
brated Anderson localization [6] can survive interactions,
and that for large enough disorder, many-body eigen-
states can also “localize” (in a sense to be precised later)
and form a new phase of matter commonly referred to as
the many-body localized (MBL) phase.

The enormous boost of interest for this topic over the
last years can probably be ascribed to the fact that the
MBL phase challenges the very foundations of quan-
tum statistical physics, leading to striking theoretical
and experimental consequences [7, 8]. Several key fea-
tures of the MBL phase can be highlighted as follows.
It is non-ergodic, and breaks the eigenstate thermaliza-
tion hypothesis (ETH) [9–11]: a closed system in the
MBL phase does not thermalize solely following its own
dynamics. The possible presence of a many-body mo-
bility edge (at a finite energy density in the spectrum)
indicates that conductivity should vanish in a finite tem-
perature range in a MBL system [5]. Coupling to an
external bath will eventually destroy the properties of
the MBL phase, but recent arguments show that it can
survive and be detected using spectral signatures for
weak bath-coupling [12]. This leads to the suggestion
that the MBL phase can be characterized experimen-
tally, using e.g. controlled echo experiments on reason-
ably well-isolated systems with dipolar interactions [13–
16]. Another appealing aspect (with experimental con-
sequences for self-correcting memories) is that MBL sys-
tems can sustain long-range, possibly topological, order
in situations where equilibrated systems would not [17–
21]. Finally, a striking phenomenological approach [22]
pinpoints that the MBL phase shares properties with in-
tegrable systems, with extensive local integrals of mo-
tion [23–25], and that MBL eigenstates sustain low (area
law) entanglement. This is in contrast with eigenstates

Figure 1. Disorder (h) — Energy (✏) phase diagram of the
disordered Heisenberg chain Eq. (1). The ergodic phase
(dark region with a participation entropy volume law co-
e�cient a1 ' 1) is separated from the localized regime
(bright region with a1 ⌧ 1). Various symbols (see leg-
end) show the energy-resolved MBL transition points ex-
tracted from finite size scaling performed over system sizes
L 2 {14, 15, 16, 17, 18, 19, 20, 22}. Red squares correspond to
a visual estimate of the boundary between volume and area
law scaling of entanglement entropy SE .

at finite energy density in a generic equilibrated system,
which have a large amount (volume law) of entanglement
and which are believed to be well described within a ran-
dom matrix theory approach.
Going beyond perturbative approaches, direct numer-

ical simulations of disordered quantum interacting sys-
tems provide a powerful framework to test MBL features
in a variety of systems [13, 16, 20, 26–41]. The MBL
transition dealing with eigenstates at high(er) energy,
ground-state methods are not well adapted. Most nu-
merical studies use full exact diagonalization (ED) to ob-
tain all eigenstates and energies and are limited to rather
small Hilbert space sizes dimH ⇠ 104 [42].
In this Letter, we present an extensive numerical study

of the periodic S = 1
2 Heisenberg chain in a random
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• First suggested by perturbative calculations : For fixed disorder, nature of states may depend 
on their energy. Mobility edge at extensive energy is possible

• Numerics see a mobility edge in XXZ and other models

Basko, Aleiner,  Altshuler  

• Existence of mobility edge debated : ‘bubbles’ argument De Roeck, Huveneers, Müller

• ‘Localized-bits’ model NOT suited in presence of a mobility edge



MBL can host «forbidden» order
• (Discrete) quantum order can be protected by disorder

Random Ising chain

Huse et al., Bauer & Nayak
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MBL can host «forbidden» order
• (Discrete) quantum order can be protected by disorder

Random Ising chain

Huse et al., Bauer & Nayak
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• Adding disorder can localize domain-walls
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• Same argument for topological order

• MBL states could be used to build quantum memories
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FIG. 1. Phase diagram of the Ising model Eq. (1) in the h/2 = J
2

=
0.3 plane with ✏ = 2(E � E

min

)/(E
max

� E
min

) being the energy
density relative to the total band width. The axes give the energy
density above the ground state and the disorder strength. The col-
ored areas are guides to the eye. The data is obtained from finite size
scaling of entanglement difference Eq. (2) after a local quench and
the spin-glass order parameter Eq. (4); only statistical error bars are
given, see text. The schematic on top of the phase diagram shows a
caricature of the spatial domain wall probability distribution in the
different phases. The thermal phase is characterized by extended do-
main walls, the MBL paramagnetic phase by localized domain walls
which are created and removed in pairs (dashed), and the MBL spin-
glass by localized non-overlapping domain walls.

localization transition. The main results of our calculations
are summarized in the phase diagram in Fig. 1 which agrees
with that discussed qualitatively in a recent insightful work by
Huse et al. [6].

We now turn to the details of our study. We employ the
transverse field quantum Ising chain with disordered cou-
plings and a next-nearest neighbor Ising term,

H = �
L�1X

i=1

J
i

�z

i

�z

i+1 + J2

L�2X

i=1

�z

i

�z

i+2 + h
LX

i=1

�x

i

, (1)

where �x and �z are Pauli matrices and L the number of sites
in the chain. The couplings J

i

= J + �J
i

are random and
independent, with all �J

i

taken from a uniform random distri-
bution [��J, �J ]. The Hamiltonian (1) has a global Z2 sym-
metry given by the parity operator P =

Q
L

i=1 �
x

i

, with eigen-
values ±1.

When J2 = �J = 0, the model reduces to the well known
quantum Ising chain in a transverse field. A quantum critical
point at h = J separates a symmetry broken phase with ferro-
magnetic order (h < J) from a paramagnetic phase (h > J).
Since MBL is concerned with all energies, we are interested
in the excited states, which in the ferromagnetic phase are
(gapped) domain walls between different ferromagnetic do-
mains. In the absence of disorder, the domain walls form ex-

tended states, with a dispersion proportional to h, and there-
fore destroy the order at any nonzero temperature (energy den-
sity above the ground state). The model is one-dimensional,
consequently any bond disorder (�J > 0) localizes the non-
interacting domain wall excitations and the system forms an
Anderson insulator. The next-nearest neighbor coupling J2
introduces a repulsive interaction between domain walls on
adjacent bonds, and breaks the integrability of the model in
the absence of disorder. In this work, we are primarily in-
terested in the regime of repulsive interactions in the ferro-
magnetic phase. For all the numerical results presented in this
paper, we use the parameters J = 1 and h/2 = J2 = 0.3.
Our qualitative conclusions do not depend on the exact values
of these parameters.

At a fixed nonzero interaction strength a MBL transi-
tion is expected at a finite critical disorder strength �JMBL

c

,
which generally depends on the energy density. An intuitive
schematic picture of the nature of the different phases in terms
of domain walls is given at the top of Fig 1. In the ther-
mal phase domain walls are extended over the whole system,
while in the MBL phase domain walls are localized. Various
approaches towards detecting the MBL transition have been
adopted [8, 13–16], but only a few have attempted a system-
atic finite size scaling analysis [19, 20, 31], largely due to a
significant drift of the studied quantities with system size. We
find the same problem with the level spacing statistics in the
current model (data not shown) and therefore seek alternative
quantities that allow for an accurate determination of phase
boundaries.

We start by studying the entanglement in the exact eigen-
states and focus on the half-chain entanglement entropy S =

�TrL ⇢ ln ⇢ of the reduced density matrix ⇢ = TrR| ih |,
where the traces are over the left and right half-chain Hilbert
spaces respectively. For each disorder realization, we find
the eigenstate |ni with energy E

n

closest to a fixed energy
E and thereby obtain a disorder distribution of entanglement
entropies. In Fig. 2a we plot the mean (left inset) and standard
deviation of this distribution, at an energy in the middle of the
spectrum, as a function of disorder strength. In the thermal
phase at weak disorder, the mean follows a volume law ap-
proaching the value S = (L ln 2�1)/2 of a random state [32]
indicated by the dashed lines. With increasing disorder the
average entanglement entropy decreases and eventually sat-
urates at S = ln 2 deep in the localized phase. The reason
for this is that eigenstates become Schrödinger cat states with
definite parity that are a linear combination of the two prod-
uct states obtained from each other by the action of P , with
each domain wall pinned by the disorder at a single bond. The
standard deviation of the entanglement entropy goes to zero in
the thermodynamic limit both deep in the thermal and local-
ized phase, but diverges at the transition. In the thermal phase
this is consistent with the eigenstate thermalization hypothe-
sis that requires the entropy to depend on energy only, while in
the localized phase all states have the same ln 2 entanglement
entropy. The diverging peak could be understood as follows.
For a given system size, disorder amplitude �J and energy,

Numerics in 1d model: Kjall et al.

Mermin-Wagner theorem does not apply: 
Long-range order even in 1d !



Precursor effect of MBL in 1d : subdiffusion
• In 1d, MBL phase can induce anomalous slowing down in the regular ETH phase (Griffiths effect)

Agarwal et al.
• Sub-diffusion characterized by varying power-laws even deep in the ETH phase
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Figure 1. Disorder averaged time evolution of the entangle-
ment entropy S(t) [panels a) and b)] for the half-system in
an open chain and spin density imbalance I(t) [panels c) and
d)], all measured after a quench from a random initial product
(unentangled) state having an average energy in the middle
of the spectrum. Left panels show the behavior in the er-
godic ETH phase, where the entanglement entropy grows as
a powerlaw / t1/z until saturation and the imbalance de-
cays algebraically / t�⇣ at intermediate times (ED results
for L = 28 sites). Right panels display the dynamical be-
havior in the MBL phase, where the entanglement entropy
grows logarithmically in time and the imbalance saturates at
a nonzero constant (ED results for L = 20 sites). Here, we
have averaged over 103 disorder configurations.

MBL regime, we recover the slow logarithmic growth of
entanglement, while the memory of initial spin density
imbalance remains even after long times. Fig. 1 shows
an overview of both ETH and MBL regimes for the time
evolution of entanglement and imbalance obtained using
Krylov space time evolution with L = 20 sites in the
MBL regime and L = 28 in the ETH phase where larger
systems are required to capture the slow dynamics.
The power-law regimes with varying exponents can be
observed as straight lines in the log-log panels for the
ETH phase. These exact results (see below for more
details) are obtained for initially unentangled product
states filtered such that their energy is in the middle
of the many-body spectrum where the critical disorder
strength is hc ' 3.7 [18].

Time evolution after a quench— We consider a global
quench protocol, where we follow the time-evolution of
an initial product state | (0)i = |�1, . . . ,�Li given by
the z projections �i under Hamiltonian dynamics

| (t)i = e�iHt| (0)i. (2)

Studying the dynamics at any arbitrary time by

fully diagonalizing H is restricted to small system sizes,
typically L = 16 for Eq. (1). Time evolution using
variational approaches based on matrix-product states
formalism [32, 33] are particularly successful in cases
where the entanglement entropy remains small, e.g. in
the MBL phase, but rapidly break down in the ergodic
phase due to the fast entanglement growth (see below).
In order to address the ETH regime, we take advantage
of the algorithm first proposed in Ref. 29 which is based
on a projection of the Hamiltonian to the Krylov space
K = span (| 0i, H| 0i, . . . Hn| 0i) using the Lanczos
algorithm and calculation of the (small) matrix expo-
nential in the orthonormal Krylov space basis. Here, we
use the implementation of the SLEPc package [34] which
calculates the matrix exponential in the Krylov basis by
a simple eigendecomposition. We are able to reach large
system sizes for any disorder strength (up to L = 28
sites) in the intermediate time regime (up to t ' 102

for the largest systems) before the entanglement entropy
saturates due to finite-system sizes. As we previously
showed [18] that the critical disorder strength hc of the
MBL transition depends on the energy of eigenstates, it
is crucial to specify the energy of the initial state. To this
end, we calculate for all disordered samples the average
energy density ✏ = (h (0) |H| (0)i � E0) / (E1 � E0),
with E0 (E1) the groundstate (maximal) energy of
the sample, for random basis states | (0)i until we
find one whose energy density is close enough to the
desired target density. In the following, we focus
on initial states with total zero magnetization that
are located in the middle of the spectrum (✏ = 0.5).
We average our results over at least 1000 disorder real-
izations, choosing a di↵erent initial state for each sample.

Sub-ballistic entanglement growth— We first discuss the
time evolution of the entanglement entropy

S(t) = �Tr
h
⇢A(t) ln ⇢A(t)

i
, (3)

where ⇢A(t) = TrB | (t)ih (t)| is the (time-dependent)
reduced density matrix obtained after cutting chains of
lengths L = 20, 24, 28 in two equal parts A and B of
size L/2. For clean systems, the growth of entanglement
entropy after such a global quench is known to be bal-
listic in time [7, 35, 36], the information spreading being
limited by a Lieb-Robinson bound [37]. Then, after a
finite time, the entropy will reach its saturation value
Ssat = `s1 for a finite subsystem of length ` [38], with
s1 ' ln 2 depending on the energy of the initial state
(here s1 ' ln 2 for our initial states with ✏ = 0.5).

In practice, the time lapse for observing an asymptotic
ballistic regime is restricted to t < tsat ' s1`, which
may prevent such an observation in particular for small
system sizes. Interestingly, using open chains the entan-
glement entropy grows a factor of 2 slower as compared
to the periodic case, while saturating at the same value

3

Figure 2. b), d) and f) Disorder averaged time evolution of the entanglement entropy S(t) in the open chain for di↵erent system
sizes and three values of disorder. c), e) and g) Logarithmic derivative of the disorder averaged time evolution of S(t), obtained
by power law fits over 8 points in time, starting from tmin. The formation of plateaus corresponds to the power law regime,
with growing extent in terms of system size. The plateaus determine the range of the power law regime, over which we extract
the exponent 1/z, displayed as a function of disorder in panel (a). Note that the range of the power law regime grows with
disorder strength as the exponent decreases, delaying the saturation of S(t). Shaded regions correspond to fit uncertainties.

Ls1/2, thus doubling the time lapse for observing uni-
versal entanglement growth before saturation. The com-
bination of open boundaries and large system sizes is cru-
cial to capture the asymptotic regime for the spreading
of entanglement. In the ETH phase of the random-field
Heisenberg chain model Eq. (1) at small disorder strength
h, we see in Fig. 2 a sub-ballistic growth in time of the
entanglement entropy, which follows

S(t) / t1/z, (4)

with a disorder-dependent dynamical exponent z � 1.
The time window over which sub-ballistic entanglement
spreading is visible grows as (s1L)z, which is clearly ap-
parent in Fig. 2 as plateaus of the local (in time) expo-
nent 1/z obtained from sliding fits to the form Eq. 4 (see
caption of Fig. 2). These local power law fits provide
an estimate of how the exponent changes if the fit win-
dow is displaced and a plateau indicates a real power law
regime. As the observed domains of constant local expo-
nents grow with system size, we conclude that in the ther-
modynamic limit the entanglement entropy grows indeed
as a power law. For the system sizes L  16 accessible to
full diagonalization, we find that it is almost impossible
to identify such a power-law regime.

The algebraic growth of Eq. (4) has been predicted to
occur in the sub-di↵usive regime found in the renormal-
ization approaches of Refs. 25 and 26, with an exponent z
which varies continuously with disorder due to the prox-
imity to the critical point. Plotted in panel a) of Fig. 2,
one sees that 1/z  1 and decreases with h. Although it
is di�cult to make a definite statement at small disorder
strength, it is plausible that the sub-ballistic entangle-
ment spreading regime takes place as soon as h 6= 0.
In any case this result contrasts with the clearly smaller

sub-di↵usive regime found for L  16 in Ref. [19].

The exponent 1/z is expected to vanish at the ETH-
MBL critical point where instead a logarithmic growth
should be observed [18, 24–26]. This should also be the
case for system sizes below the correlation length in a
critical regime around hc. Within the system sizes and
time regimes that we can access, we cannot discriminate
between a logarithmic and a very slow algebraic behavior.
This critical logarithmic growth likely implies that the
power-law fits for h & 3 may be spoiled by a logarithmic
component (not present in our fitting function), result-
ing in a slightly overestimated value of 1/z in this regime.

Time evolution of a spin density imbalance— The
hallmark of MBL is the absence of thermalization, which
can be seen in quantum quench protocols as a violation
of initial state independence [1, 39]: some memory
of the local initial conditions is preserved even at
infinite time, in contrast with the ETH phase where any
particular local feature of the initial state is lost along
the unitary evolution. In a recent cold atom experiment
with interacting fermions loaded in a quasi-periodic
optical lattice [31], this property has been used to
define a working ”order parameter” to characterize the
MBL phase for the transition through the study of the
relaxation of an initially prepared charge density wave:
a non-zero charge imbalance persisting at long time
signals the MBL phase.

Here, we show that the intermediate time dynamics
of the imbalance can display an anomalous power-law
regime characteristic of the sub-di↵usive regime. We gen-
eralize the imbalance to any initial basis state of the form
| (0)i = |�1, . . . ,�Li (with zero magnetization) present-

Extended slow dynamical regime prefiguring the many-body localization transition
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Many-body localization is characterized by a slow logarithmic growth of the entanglement entropy
after a global quantum quench while the local memory of an initial density imbalance remains
at infinite time. We investigate how much the proximity of a many-body localized phase can
influence the dynamics in the delocalized ergodic regime where thermalization is expected. Using
an exact Krylov space technique, the out-of-equilibrium dynamics of the random-field Heisenberg
chain is studied up to L = 28 sites, starting from an initially unentangled high-energy product state.
Within most of the delocalized phase, we find a sub-ballistic entanglement growth S(t) / t1/z with a
disorder-dependent exponent z � 1, in contrast with the pure ballistic growth z = 1 of clean systems.
At the same time, anomalous relaxation is also observed for the spin imbalance I(t) / t�⇣ with a
continuously varying disorder-dependent exponent ⇣, vanishing at the transition. This provides a
clear experimental signature for detecting this non-conventional regime.

PACS numbers: 75.10.Pq, 72.15.Rn, 05.30.Rt

The many-body localization (MBL) phenomenon has
attracted an enormous interest in the last few years (see
Refs. [1, 2] for recent reviews). This is mainly due to
the fundamental issues that MBL raises regarding the
foundations of quantum statistical physics, e.g. the ab-
sence of thermalization and a violation of the eigenstate
thermalization hypothesis (ETH) [3–5], the persistence of
local quantum information at very long time [6] and the
slow logarithmic growth of entanglement entropy with
time [7–12]. Furthermore, MBL behaves as an emerging
integrable system, with an extensive number of local in-
tegrals of motion [11, 13–15], and MBL states exhibit low
(area-law) entanglement even at high energy [16]. In this
context, one of the most studied theoretical models is the
spin- 1

2 random-field Heisenberg chain [6, 8, 9, 17–19]

H =
LX

i=1

⇣
~Si · ~Si+1 � hiS

z
i

⌘
, (1)

which lies in the same class as interacting fermionic
rings in a disordered potential [20–23]. Exact diago-
nalization studies have clearly identified a MBL transi-
tion [6, 18, 24], and a many body mobility edge in one
dimension [18, 24], in contrast with single particle Ander-
son localization. However the precise nature of the tran-
sition remains elusive despite tentative finite size scaling
analyses, practically limited to the small range of avail-
able system sizes L  22 [18].

Recently, two analytical phenomenological renormal-
ization approaches have been proposed [25, 26] for the
dynamical transition MBL — ETH in one dimension.
Building on di↵erent ingredients, both studies neverthe-
less reached comparable conclusions regarding the criti-
cal regime. One interesting common aspect is that slow
dynamics is predicted on the delocalized side of the tran-
sition, interpreted as Gri�ths regions [27]. Signatures
of such anomalously slow dynamics on the ergodic side

of the transition was previously observed numerically for
1D models in Refs. [19, 22, 28] on small systems L  16.
While Agarwal et al. [19] found a transition di↵usive –
sub-di↵usive roughly in the middle of the ergodic regime,
Bar Lev et al. [22] concluded for a more extended sub-
di↵usive phase, although they did not precisely locate the
boundary.

In this Letter we address this crucial issue of anoma-
lous dynamics in the delocalized regime when approach-
ing the MBL transition for the random-field Heisenberg
chain model Eq. (1). We study the time evolution after
a quantum quench for systems up to L = 28 sites using
an exact Krylov space method [29]. Reaching these large
system sizes turns out to be decisive for drawing firm con-
clusions on the dynamical response after a global quench.
We focus on the out-of-equilibrium response for two key
quantities: the entanglement entropy and the spin den-
sity imbalance. While the former is a central object for
quantum quenches [30], the latter addresses the prevail-
ing question of how the memory of an initial quantum
state is lost with time, and allows to make a direct con-
nection with recent experiments on interacting fermions
in a 1D quasi-random optical lattice [31].

Our exact numerical results for the time evolution of
these two quantities provide a strong support for the
absence of di↵usive regime in most of the delocalized
ETH phase. Instead, a sub-ballistic entanglement
growth is clearly observed for the von-Neumann entropy
S(t) / t1/z, with a disorder-dependent exponent z � 1.
The relaxation of an initial spin density imbalance also
displays a power-law behavior, as it decays in time
I(t) / t�⇣ with a non-universal exponent ⇣, superposed
by sub-dominant oscillatory terms. These two exponents
governing the entropy growth and the decay of the
imbalance are continuously varying with the disorder
strength and both vanish at the MBL transition. In the
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Figure 2. b), d) and f) Disorder averaged time evolution of the entanglement entropy S(t) in the open chain for di↵erent system
sizes and three values of disorder. c), e) and g) Logarithmic derivative of the disorder averaged time evolution of S(t), obtained
by power law fits over 8 points in time, starting from tmin. The formation of plateaus corresponds to the power law regime,
with growing extent in terms of system size. The plateaus determine the range of the power law regime, over which we extract
the exponent 1/z, displayed as a function of disorder in panel (a). Note that the range of the power law regime grows with
disorder strength as the exponent decreases, delaying the saturation of S(t). Shaded regions correspond to fit uncertainties.

Ls1/2, thus doubling the time lapse for observing uni-
versal entanglement growth before saturation. The com-
bination of open boundaries and large system sizes is cru-
cial to capture the asymptotic regime for the spreading
of entanglement. In the ETH phase of the random-field
Heisenberg chain model Eq. (1) at small disorder strength
h, we see in Fig. 2 a sub-ballistic growth in time of the
entanglement entropy, which follows

S(t) / t1/z, (4)

with a disorder-dependent dynamical exponent z � 1.
The time window over which sub-ballistic entanglement
spreading is visible grows as (s1L)z, which is clearly ap-
parent in Fig. 2 as plateaus of the local (in time) expo-
nent 1/z obtained from sliding fits to the form Eq. 4 (see
caption of Fig. 2). These local power law fits provide
an estimate of how the exponent changes if the fit win-
dow is displaced and a plateau indicates a real power law
regime. As the observed domains of constant local expo-
nents grow with system size, we conclude that in the ther-
modynamic limit the entanglement entropy grows indeed
as a power law. For the system sizes L  16 accessible to
full diagonalization, we find that it is almost impossible
to identify such a power-law regime.

The algebraic growth of Eq. (4) has been predicted to
occur in the sub-di↵usive regime found in the renormal-
ization approaches of Refs. 25 and 26, with an exponent z
which varies continuously with disorder due to the prox-
imity to the critical point. Plotted in panel a) of Fig. 2,
one sees that 1/z  1 and decreases with h. Although it
is di�cult to make a definite statement at small disorder
strength, it is plausible that the sub-ballistic entangle-
ment spreading regime takes place as soon as h 6= 0.
In any case this result contrasts with the clearly smaller

sub-di↵usive regime found for L  16 in Ref. [19].

The exponent 1/z is expected to vanish at the ETH-
MBL critical point where instead a logarithmic growth
should be observed [18, 24–26]. This should also be the
case for system sizes below the correlation length in a
critical regime around hc. Within the system sizes and
time regimes that we can access, we cannot discriminate
between a logarithmic and a very slow algebraic behavior.
This critical logarithmic growth likely implies that the
power-law fits for h & 3 may be spoiled by a logarithmic
component (not present in our fitting function), result-
ing in a slightly overestimated value of 1/z in this regime.

Time evolution of a spin density imbalance— The
hallmark of MBL is the absence of thermalization, which
can be seen in quantum quench protocols as a violation
of initial state independence [1, 39]: some memory
of the local initial conditions is preserved even at
infinite time, in contrast with the ETH phase where any
particular local feature of the initial state is lost along
the unitary evolution. In a recent cold atom experiment
with interacting fermions loaded in a quasi-periodic
optical lattice [31], this property has been used to
define a working ”order parameter” to characterize the
MBL phase for the transition through the study of the
relaxation of an initially prepared charge density wave:
a non-zero charge imbalance persisting at long time
signals the MBL phase.

Here, we show that the intermediate time dynamics
of the imbalance can display an anomalous power-law
regime characteristic of the sub-di↵usive regime. We gen-
eralize the imbalance to any initial basis state of the form
| (0)i = |�1, . . . ,�Li (with zero magnetization) present-
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We study high temperature spin transport in a disordered Heisenberg chain in the ergodic regime. By employ-
ing a density matrix renormalization group technique for the study of the stationary states of the boundary-driven
Lindblad equation we are able to study extremely large systems (400 spins). We find both a diffusive and a sub-
diffusive phase depending on the strength of the disorder and on the anisotropy parameter of the Heisenberg
chain. Studying finite-size effects we show numerically and theoretically that a very large crossover length
exists that controls the passage of a clean-system dominated dynamics to one observed in the thermodynamic
limit. Such a large length scale, being larger than the sizes studied before, explains previous conflicting results.
We also predict spatial profiles of magnetization in steady states of generic nondiffusive systems.

Introduction.— There are ever increasing technological ca-
pabilities in simulating isolated quantum systems through
cold atomic gases [1] and, recently, through coupled, con-
trolled superconducting qubits [2]. While there is a com-
mensurately good theoretical handle on capturing ground state
properties of such systems [3], understanding their dynamical
properties, especially away from the ground state, is fraught
with analytical and numerical challenges.

Despite this, in the recent years we have witnessed a change
in paradigm in the study of isolated quantum systems, in par-
ticular with regard to the role that disorder plays in such sys-
tems. The turning point came about from the study of An-
derson localization [4] in interacting, many-body quantum
systems [5]. The observation that disorder and quantum ef-
fects can hinder transport (of energy, charge or spin) even at
an infinite temperature and in the presence of interactions [6]
opened the door to a new phenomenology of a so-called many-
body localized (MBL) phase exhibiting many unique and in-
teresting properties. Slow growth of entanglement [7, 8],
emergent integrability [9], protection of symmetries [10], and
change in the properties of eigenstates [11–13] are a few of
the peculiar properties of this newly identified phase; see re-
view [14] for a comprehensive list. The implications of the
new MBL physics, being inherently robust, are far reaching,
going from fundamental physics to the theory of quantum
computation [15], some of which have already been experi-
mentally probed [16].

While the deep MBL region (in one dimensional systems)
is well understood, much remains to be said about the con-
ducting regime and the transition to it. Although both aspects
are important, here we focus on characterizing the conducting
phase, in particular its transport properties, in, what is by now,
an archetypal model that harbors the MBL phase, i.e., the one
dimensional anisotropic Heisenberg model.

Generic arguments and numerical evidence on very small
systems (about 20 spins) have been put forward for the ex-
istence of subdiffusive transport of spin [17–20] and energy
[18, 21, 22]. A number of recent works have analyzed its
spin transport properties in the ergodic phase, finding differ-
ent results. Applications of numerical renormalization group

recipes [18, 21] (which should be valid in some region preced-
ing the MBL transition) find a subdiffusive phase for energy
and spin transport, with continuously changing subdiffusion
exponents. Numerical calculations (on small systems) find ei-
ther (i) a subdiffusive regime close to the MBL transition pre-
ceded, at smaller disorder, by a transition to diffusion [19], or
(ii) a subdiffusive regime all the way to zero disorder without
a sharp transition in between [20].

In this Letter we resolve the issue by clearly demonstrat-
ing the existence of both a diffusive and a subdiffusive regime
within the ergodic phase; in so doing we identify the tran-
sition point (its value being different from previous claims),
and provide an explanation for the finite-size effects in terms
of a mechanism for equilibration of the conserved quantities
of the integrable clean model [23]. Which regime occurs de-
pends both on the anisotropy parameter of the clean system
and on the disorder strength. The phase diagram summarizing
these points is shown in Fig. 1.

We study spin transport by coupling the system to a combi-
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FIG. 1. (Color online) Phase diagram of a disordered anisotropic
Heisenberg model in the high temperature ergodic phase. At a crit-
ical disorder strength hc2 there is a transition from diffusive to sub-
diffusive spin transport. Black circles with error bars denote hc2

determined from the steady-state current scaling j ⇠ 1/L� in large
systems (L ⇡ 400 sites, see Fig. 2). The underlying colors are for il-
lustrative purposes and denote � obtained from small systems L  7,
which, nevertheless, correctly depicts the two regimes, except close
to h = 0 and � = 0.
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• Calculation with simple 
local baths on large systems 
confirm sub-diffusion • Subdiffusion should NOT be 

there in d>1 



Open questions

SCENES FROM NEXT EPISODE



Current (open) issues in the field
• Existence of mobility edge : numerics and bubble arguments in contradiction, what 

about local integral of motions ?

Influence on the metallic phase : 
subdiffusion limited to 1d, generic? Relation to Anderson problem 

(e.g. on a random graph) ?

Can we constraint existence of MBL due to 
symmetry (à la Mermin-Wagner) ?

Potter, Vasseur

Does MBL really need disorder ? Suggestions of translation-invariant MBL 
(including in Josephson Junctions). Do they pass the numerical tests? De Roeck, Huveneers,

 MüllerPino, Ioffe, Altschuler

• Nature of the phase transition ? RG vs numerics ? Field theory ??

MBL and driven / Floquet 
systems: avoid heating! Quantitative description of 

coupling to a bath ?
Nandkishore, Gopalakrishnan

Does MBL exist in d>1 ? In the continuum ?
What about experiments in d=2??

Search for MBL in other condensed-matter 
systems (Josephson junctions, DNP) ??



Conclusions & outlooks
• Message 1: MBL is an active interesting field!  Revisits usual stat-mech, 

connections to different fields (many-body quantum physics, quantum 
chaos, quantum information, cold-atoms…)

• Message 2 : MBL is a technical challenge for theoreticians

Realization in condensed matter / mesoscopic physics setups ?

Field theory? 

& experimentalists
Numerics are hard! New Methods?

• Message 3 : Many physics question still open!
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